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AUTOMATING REPRESENTATION CHANGE
ACROSS DOMAINS FOR REASONING

Aaron Stockdill

Representing a problem well can make it trivial to solve; represent it
poorly, and it becomes impossible. But what makes a representation
suitable for a problem, and how can we automatically choose the most
suitable from a set of alternatives? Choosing an appropriate represent-
ation is a difficult, long-standing problem in artificial intelligence; we
want to support people in making an appropriate representation selec-
tion based on the problem they are solving, their own cognitive strengths,
and the representational systems available. A large part of the challenge
in choosing alternative representations stems from not knowing what
is ‘the same* which parts in the problem statement correspond to parts
of an analogous statement in a different representation. If instead this
choice was automated, users could better understand the problem, and
work towards a solution when given a more appropriate representation.

This dissertation contributes a novel approach for the identification
of alternative representations of problems through the idea of correspon-
dences. This is a key step towards being able to select representations
that are well-suited to enabling problem solutions. Exploiting corres-
pondences, we demonstrate how to compute the informational suitabil-
1ty of alternative representational systems; the practical utility of this is
shown with a software implementation. The generality of this theory
and implementation is demonstrated by applying both to a domain that
is distinct from the one it was developed in. We evaluate our theory and
implementation with an empirical study, where we present experts with
a similar challenge of evaluating representational system suitability, and
comparing their responses with that of our implementation.

The work described in this dissertation creates possibilities for soft-
ware tools that react to the problem and user: intelligent tutoring systems
with multiple ways of explaining concepts to students; or interactive the-
orem provers that create analogies to help the human prover in finding
key insights. The resulting tools centre on the representational needs of
the human, not the computer.
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INTRODUCTION

Maps, like many other kinds of visualizations,
distort the ‘truth’to tell a larger truth.

— Barbara Tversky

COMMON ADVICE WHEN attempting to solve a problem is to ‘draw a
picture] to form analogies between the problem and the diagram. This
can focus attention to a specific instance of a more general problem,
make implicit relationships explicit, and allow us to exploit the human
visual reasoning system. We have all experienced the sudden realisation
that comes with drawing an effective diagram to express our problem.
But what is an effective diagram?

Choosing an effective diagram is a process of many parts. We must
explore what makes up the problem being solved, and similarly what the
different representational systems are that we could use to express the
problem. Some systems will be able to express all the required parts of
the problem, some will not; some will be able to express so much more
as to obscure solutions, rather than illuminate them. The person solving
the problem comes with their own set of strengths and weaknesses.

This dissertation contributes a novel approach to evaluating and re-
commending alternative representational systems tailored for specific
problems and users. We focus on how we describe problems and repres-
entational systems, and how we link the two together to make a suitable
recommendation. Figurel.l shows two representations of ‘summing
the integers from 1 to n* the first is algebraic, while the second uses
dots. These two representations come from two distinct representational
systems—the first from ‘algebra; the second from ‘dot diagrams’—and
these systems have particular correspondences—dot arrangements repres-
ent numbers, stacking is like summing, and so on. To consider why the
algebraic representation could be represented in the dot diagram system,
we need descriptions of the representation and representational systems,
and sets of correspondences between the systems; the people who create
these descriptions and sets we call analysts. In parallel, users are profiled
to determine their cognitive strengths and abilities. The descriptions,
correspondence sets, and user profile are then fed into our framework
to compute the informational suitability and cognitive cost of each altern-
ative representational system, so that we have a measure of the overall
appropriateness of each system, and can thus make a recommendation
to the user. This pipeline, from representations to recommendations, is
summarised in Figure1.2.
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Two representations of the ‘same’ expression in different representational systems:
algebra and dot diagrams. The algebraic representation asserts that the sum of
integers between 1 and n is equal to the stated quadratic expression. The dot
diagram counts the dots in a triangle by vertically stacking rows of dots (the black-
edged circles), each one longer than the last, then observing a symmetry to create
a rectangle. The annotations assert the generalised size of the rectangle, and so the
number of dots in the original triangle is half the number in the rectangle, which
itself is the product of the dimensions. We shall return to this example throughout
this dissertation.

Context and motivation

Problem-solving encompasses many high-level reasoning tasks, so sup-
porting people when solving problems can mean supporting many daily
tasks. For this project, we consider mathematical problem solving: given
a set of assumptions, determine whether a particular result holds. A
common first impression of mathematics is that the notation is largely
‘formulae’ strings of symbols. But a diverse assortment of representa-
tional systems exist to encode mathematics: graphs, geometric figures,
Venn diagrams, and many more. Why are these representational systems
useful, and how are they related to each other?

Human problem solving

To solve a problem is, quite simply, to transform the problem statement
into a goal statement [Simon et al. 71]. The goal might not be known at
the start, but there is usually a way to identify it. The series of transforma-
tions is the problem solving process: taking a step away from the problem
statement, towards the goal statement, by performing individual actions.
In this way we induce a problem solving space—a graph' —that we, as
problem solvers, traverse. We might walk the wrong way, or take a long
path, or paths with high arc costs,” but as long as we end in a goal state
we have solved the problem.

Even experts are forced to traverse the problem space, but they do
not necessarily traverse the same space as novices[Condell et al. 10]. They
can skip over states by combining arcs, or have strong heuristics when
deciding which arc to follow. Experts have a mental map of the problem
space that, quite literally, makes the solution path more obvious [Simon
et al. 78]. How can we give the same abilities to novices? What strategies

16
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1.1  Context and motivation
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The representation recommendation pipeline from beginning to end, including the
analysts creating representations, user profile generation, the algorithm computing
informational suitability and cognitive cost, and the combination of the two meas-
ures. Note that ‘Manual’ and ‘Potentially automatable’ are short-term projections;
we hope all steps will one day be automatic.

can we use to manipulate the problem space, and so make the problem
easier to solve?

People use many different strategies to solve problems, from general-
isation to specialisation to analogy [Pdlya 57]. While problem solving is
the traversal of the problem space, strategies aim to change the problem
space making it easier to traverse. We might make the steps between
states smaller, and easier to grasp; conversely, each step might be more
difficult, but result in fewer necessary steps. Perhaps the number of de-
cisions along the path is reduced, making the search less overwhelming.
Intelligent problem solving is not searching a large problem space: it
is avoiding searching a large problem space [Simon et al. 71]. If the user
can be given a problem space which they can more easily traverse, then
solving the problem also becomes simpler. We must recommend a way
to induce a problem space which best matches the problem, and the user
solving the problem.

Heterogeneous reasoning

An effective way to change the problem space is to change the repres-
entational system that the problem is stated in: to consider the problem
heterogeneously.> From Pdlya’s problem solving strategies, we focus on
two representational system changes: ‘draw a figure] and ‘analogy’ [PSlya
57]. We further consider that drawing a figure is constructing an analogy
that happens to be to a diagrammatic representation. For now, let us
focus on drawing diagrams, and consider how they can be so effective at
supporting reasoning.

17
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3 Restricting the problem
to a single representation
means it is represented
homogeneously.



* For example, a map does
not ‘state’ that object z is
at a location (x,y)—the

object z is at the location.

3> We interpret
‘diagrammatic’ broadly;
anything visual and not

sentential.

6 String-like, sentence-like.

1.1.3
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As famously noted in the title of Larkin and Simon’s paper, a diagram
can be worth 10 000 words [Larkin et al. 87]. They note three advantages
of diagrams: spatial grouping, where related objects appear close to each
other, so reducing the search for information; reduced labelling, such
that things are not referenced, they simply are;* and ‘perceptual infer-
ences’ can be had almost for free [Shimojima 96]. These features result
in a problem space for which novices have better heuristics, and is lower
cost to navigate through [Cheng 04].

Diagrams are also useful not just in isolation, but when considered
together. By using several representations—both diagrammatic’ and
sentential® —the problem solver can compare and contrast the repres-
entations. This juxtaposition can elucidate previously concealed inform-
ation because of the contrast between explicit and implicit information
encoding. Complementary representations have explanatory power be-
cause they are analogically related: consider a table and a plot, where the
former provides easily indexed, precise values, while the plot highlights
trends and patterns. Each is useful, but together they are more effective.

Representations are able to change the problem space that the solver
must traverse. By suggesting representational system changes, we can
guide the solver to work in problem spaces that they are more effectively
able to traverse. That is, by suggesting an appropriate representation
change for the problem and user, we can make solving the problem
easier for that user.

Intuiting similarity

Analogies are an interesting class of relations because they are very broad,
and not universal. What might be an obvious analogy to one person
might be unclear to another. But at their core, analogy is about the simzl-
arity of two things, and by inspecting the properties of one thing, we can
extend the analogy to the properties of the other. The effectiveness of an
analogy for problem solving is non-obvious: a higher degree of similar-
ity is not always better, but missing similarity on specific properties can
result in ineffective analogies [Thagard 92].

The effectiveness of an analogy is partly related to its ‘depth’ [Gentner
83]: surface analogies are weaker than structural analogies. That is, the
best analogies link the internal structure of both objects, ensuring the
similarity of the objects is carried throughout. If the problem solver has
more expertise on one object in the analogy, they can lift that expertise
across the analogical link, and so exploit their expertise in a domain
where they previously had less. By creating analogous representations of
the current problem, the novice can make themselves an expert.

By identifying how representations are similar, we can consider how
‘strong’ the analogy between them is. A representation that makes a sufh-
ciently strong analogy to the problem that the user is currently solving is
a candidate to which the user could transform their current problem. If
the representation that makes the strong analogy also changes the prob-

18



1.2

12 Research questions

lem space into one more suitable for the problem and the user, then
the user may be able to use the analogy to more effectively solve their
problem.

Research questions

The overarching aim of this research project is to support human reas-
oning by encouraging and guiding the use of alternative representations.
For the purposes of this dissertation, we identify three key themes that
direct the path of our research: understanding representations and rep-
resentational systems, capturing the similarities between systems, and
using these similarities to recommend more suitable representations of
problems.

Our first strand of research on representations and representational
systems is summarised by the question:

Question1. What constitutes a problem, representation,
and representational system, and can we describe each of
these in a way that is equally suited to many varieties of
representations?

This directly leads to three objectives:

e distinguish between problems, representations, and representa-
tional systems;

e identify the fundamental components of a representation, applic-
able to all representational modalities; and

e arrange these components into descriptions of problems, repres-
entations, and representational systems.

Now we consider how representations and representational systems
interact with each other and are linked together. Thus our second re-
search question is:

Question2. How are representational systems—and their
components—similar, and can we state which components
are similar across systems?

The three resulting objectives are:
* to define a similarity relation on components and descriptions;

e interpret this relation with respect to the underlying representa-
tional systems; and

* determine this relationship between two arbitrary representational
systems’ descriptions, potentially automatically.

Finally, we bring together the strands of work generated by the pre-
vious two questions:

19
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Question 3. How can we algorithmically evaluate and rank
representational systems based on their ability to be used to
solve a particular problem?

So we have three further objectives:

define a measure of ‘suitability’ for a representational system with
respect to a problem and a user;

implement this suitability function as practical validation; and

evaluate the ‘correctness’ of (our implementation of) this suitabil-
ity function.

1.3 Contributions

The work in this dissertation is deeply linked with the work by the
rep2rep research group, which consists of Prof. Mateja Jamnik, Prof.
Peter C.-H. Cheng, Dr Grecia Garcia Garcia, Dr Daniel Raggi, Dr Gem
7 And at the beginning of ~ Stapleton, and Holly Sutherland. In this section” we state contributions
cach chapter.  of this dissertation. We emphasise seven key contributions, four of which
are uniquely attributable to this dissertation, and three of which are em-
bedded within the rep2rep project.

131 Contributions of this dissertation
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1. The novel concept of correspondence is a direct contribution of this

dissertation. Whilst the specifics were informed by the rep2rep
project, this dissertation is where correspondences are defined and
developed. This includes the definition, theory, tooling, discov-
ery, and interpretation, which are described in detail in Chapter 4.
Correspondences are a route to answer to our second research
question.

2. We develop informational suitability in Chapter 5, our answer to the

third research question; the formalisation and implementation of
minimally redundant and maximally covering (MRMC) corres-
pondence sets is a contribution of this dissertation. This concept
allows for more comprehensive correspondence sets, while avoid-
ing ‘double-counting’ when computing informational suitability.

3. The implementation of the recommendation framework as robin,

and the surrounding family of tools, is a contribution of this dis-
sertation, except for the implementation of cognitive properties and
cognitive costs. We describe this implementation in Chapter 5, as a
means to evaluate the practicality of our solution to the third re-
search question. We apply the framework—and implementation—
to a detailed example in Chapter 6.



1.3  Contributions

4. A further contribution of the dissertation is an empirical study that
evaluates the representational system recommendations made by
the rep2rep framework. The study aims to determine the extent to
which the framework makes recommendations that are consistent
with those of experts. The results establish that even experts do
not have a universally consistent view on which representational
systems are most suitable for particular problems and user profiles,
reinforcing the need for tools to support heterogeneous reasoning.
This study constitutes Section 7.3.

1.3.2  Contributions as part of the rep2rep project

5. Components and descriptions, the focus of Chapter 3, are unique
to the rep2rep project, and originate in that work; they address our
first research question. The concepts of components and descrip-
tions have been updated and refined in conjunction with the work
contributed by this dissertation, notably during the definition of
correspondences. Work relating to the format of descriptions and
the computational encoding of components is a contribution of
this dissertation, in Sections 3.2.2 and 3.2.3. The work on pseudo-de-
scriptions is part of this dissertation, and is discussed in Section 4.4.
Cognitive properties, also part of Chapter3 in Section 3.4, are not
a contribution of this dissertation.

6. Informational suitability, presented in Chapter 5, is the combined
contribution of the rep2rep research team and this dissertation.
Its definition was developed alongside correspondences, and so
was directly influenced by the work presented here. Amongst the
rep2rep researchers and me, no one person could be considered
the lead contributor. Cognitive costs (Section 5.2.2) build on the
cognitive properties, and are not a contribution of this dissertation.
Together, informational suitability and cognitive cost address our
third research question.

7. The dissertation also presents another evaluation, which we call the
ablation study. Whilst the data was initially collected and analysed
in collaboration with the rep2rep research group, this dissertation
extended that study to include ablated versions of the framework
missing the factors zmportance and correspondence strength. The
results suggest that each factor in our framework contributes im-
portant information to the final suitability score, and are presented
as Section 7.2 in Chapter?7.

In summary, this dissertation contributes a novel method of linking
together representational systems by means of correspondences, which
are used to evaluate the informational suitability of said systems for the
purpose of problem solving. It provides a proof-of-concept implementa-
tion (robin) that automates this evaluation and subsequent recommen-
dation, given correctly formatted descriptions and correspondence sets.
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This dissertation includes an evaluation of the efficacy of this implement-
ation by way of an empirical study and an ablation study. The result is a
system that achieves the stated goal of automatically suggesting alternat-
ive representational systems to potentially help a user more easily solve
specific problems.
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Dissertation outline

Background & literature We continue this dissertation with Chapter2
as an exploration of the existing work on problem solving. We
tackle this from two directions: the cognitive processes and men-
tal strategies inside the human mind when solving problems; and
automated computational reasoning, largely in the domain of the-
orem proving. We examine representations in terms of how we
define and classify them, what effect they have on the problem
solving process, and how they are designed and evaluated to be
effective.

Components & descriptions Chapter3, our entry to novel material,
begins with a definition of components and descriptions. This chapter
includes a brief diversion into the philosophy of why we take
the approach we do on representation description, before shifting
to examine a parallel aspect of the rep2rep framework: cognitive
properties.® This chapter addresses our first research question, con-
tributing a language to describe problems, representations, and
representational systems.

Correspondences With components and descriptions in our vocabu-
lary, Chapter 4 considers how the links between components can
be captured, and then understood at the description level. We in-
troduce the formal underpinnings of correspondences and their
strengths, and describe how this allows us to interactively discover
new correspondences based on existing correspondences. Corres-
pondences are our contribution towards the second research ques-
tion, and understanding how representational systems can capture
similar concepts in different ways.

Automated representation recommendation In Chapter$ we bring
together components, descriptions, and correspondences to eval-
uate the suitability of representational systems, and thus recom-
mend to which the user should switch. We revisit the complete rec-
ommendation framework, and define the objective functions for
both the informational suitability of representational systems, and
their cognitive cost. We examine the details of filtering correspon-
dences. This chapter covers details in the robin codebase, our im-
plementation of the rep2rep framework. The work in this chapter
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addresses our third research question, providing an algorithmic
approach to representational system recommendation.

Applying the framework With the entire framework covered, we re-
view an application of the framework, and show how it applies
in new domains. While this dissertation uses examples of repres-
entation change from school-level mathematics, Chapter 6 instead
exemplifies how programming languages and algorithms can fit
into this paradigm, and so each language is evaluated for its suit-
ability to implement each algorithm. This chapter demonstrates
the generality of our work and how it can be applied to more than
mathematics.

Evaluating the framework To demonstrate the practicality of our work,
we evaluate the framework with an ablation study and an expert
study, both in Chapter7. We first ablate the framework of two
factors that contribute to informational suitability: component
importance, and correspondence strength. We examine the output
and determine the influence of each feature on the representa-
tional system recommendation, demonstrating that each factor is
bringing new information to the recommendation, and is thus im-
portant to the framework. Then the user study presents mathemat-
ics teachers with the same challenge as we give to our framework:
given a problem and hypothetical user, evaluate the suitability of
alternative representational systems. We consider their responses
quantitatively and qualitatively, and find broad trends based on
both problem and user.

Conclusions & future work Finally, Chapter8 summarises our work
and contributions, and reiterates the future research opportunities
highlighted throughout the dissertation.

SUMMARY OF CHAPTERI

This dissertation contributes novel methods to the long-standing open
problem of recommending alternative representational systems, by way
of correspondences. We define, formalise, and implement tools based
on correspondences to demonstrate their theoretical and practical utility.
The described work opens new approaches to interactive software that
reacts and adapts to the problem and problem solver, working with the
user to make their problem easier for them to solve by recommending
appropriate representational systems.
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BACKGROUND & LITERATURE

The more of the context of a problem that a
scientist can comprehend, the greater are his
chances of finding a truly adequate solution.

— Russell L. Ackoff

THE coaL oF this dissertation is to develop a framework that can re-
commend a representational system for any specific person to solve any
specific problem. This is a goal of three parts: the problem, the per-
son, and the representational system. We must understand all three
to recommend an effective representational system; in this dissertation
we produce a framework and software implementation based on these
ideas. This chapter reviews the current research on problem solving with
representations, both from a human-centred perspective, and from a
software-centred perspective. This chapter forms the basis of our paper
published at the International Conference on the Theory and Application of
Diagrams (Diagrams) 2021[Stockdill et al. 21].

We begin this chapter in Section2.1 by exploring the human reas-
oning system: how people understand and solve problems, and how
expertise affects the solving process. In Section 2.2 we consider how rep-
resentations interplay with human reasoning: the different modalities,
their effectiveness, the relationship to analogy,and how human reasoners
choose representations for their problems. From the software angle, we
consider how problems are solved by automated and interactive theorem
provers; Section 2.3 explores different types of theorem provers, and how
some incorporate multiple representations to varying degrees.

Cognition and reasoning

People are excellent reasoners, able to adapt and update their problem
solving strategy such that almost any problem can be tackled. But some
people are able to solve problems more effectively than others, exhibiting
expertise in particular domains. We focus on problem solving because of
its generality: there is an initial state, some way of identify goal states, and
actions that can be taken that modify the state. A wide array of tasks can
be modelled as problem solving, so we wish to understand how humans
model problem solving, and how expertise is related to this model.
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! Famously, seven plus or
minus two chunks [Miller
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A typical three-disc Tower of Hanoi puzzle. The goal is to move all three discs from
the starting peg to one other peg. You can move any disc that is at the top of its
stack to any other peg, but at no point can a larger disc be on top of a smaller disc.

Problem solving

Solving a problem is conjectured to be a tight loop of understanding,
planning, executing, and evaluating progress until a condition is met
[PSlya 57]. Pélya’s influential work on problem solving, How to Solve It:
A New Aspect of Mathematical Method, lays out these four steps clearly,
presents many varied examples of each step, and exemplifies the loop in
its entirety. A more formal treatment of problem solving comes from
Simon et al., where they introduce the problem space [Simon et al. 71]. The
problem space is modelled as a (possibly infinite) graph where nodes
are the problem state, and the arcs are the actions that allow movement
between them; if a series of arcs connects the initial state to some goal
state, then there is a solution to the problem. The nature of the problem,
and the representation of the problem, determine the problem space.
The person solving the problem must traverse the problem state space.

In this dissertation, we choose Simon et al’s model of problem solv-
ing as our foundation. We use this model because it maps cleanly to
common models of automated reasoning and theorem proving, making
our comparison with these tools simpler. Other ways to frame problem
solving (such as Zhang’s distributed cognition [Zhang 97], or Johnson-
Laird’s mental models [Johnson-Laird 06]) may also function as a suitable
foundation, but are beyond the scope of this dissertation.

When a person is traversing the problem space, some factors are
fixed: the fundamentally serial information processing, small-capacity
but rapid-recall short-term memory, and effectively infinite slow-recall
long-term memory. But other factors are mutable, such as how the space
is traversed. Kotovsky et al. presented participants with variations on the
“Towers of Hanoi’ problem, recording how they interacted with the prob-
lem and made progress towards (and away from) the solution [Kotovsky
et al. 85]. The Towers of Hanoi puzzle, depicted in Figure 2.1, involves
three discs with holes stacked atop one peg—a small disc on top, then
a medium sized disc, then a large disc at the bottom. Alongside, there
are two pegs without any discs. The goal is to move all three discs from
the first peg to either of the remaining pegs such that they all end up on
the same peg, in the same order they started, and at no point is a larger
disc on top of a smaller disc. Kotovsky et al. analysed how people per-
form when presented with isomorphic variants of the Towers of Hanoi
puzzle—such as monsters-and-globes, boxes-and-dots, or acrobats-and-
flagpoles—and with different types of action: either moving objects (as in
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moving a disk from one peg to another) or changing their size. Notably,
representations involving unfamiliar scenarios (e.g., monsters rather than
acrobats), and representations involving changing rather than moving,
strongly hindered problem-solving performance, in spite of the problem
being isomorphic. When facing an unfamiliar problem, participants ten-
ded to probe the problem space: they would perform a short sequence
of actions with minimal deviation from the planned sequence before
returning to the initial state. After these probes had been completed, and
the participants were satisfied with their ability to traverse the space, they
applied short sequences of actions chained together, rapidly converging
on the goal state. These action sequences achieved sub-goals, unblocking
the next action to be performed [Kotovsky et al. 85].

The work by Kotovsky et al. has two significant results that impact
our work: first, there are two distinct methods of traversing the problem
space (the probing back-and-forth approach, and the rapid sub-goal chain-
ing approach); and second, changing the representation of the problem
without changing its nature made the Towers of Hanoi-like problems
easier or harder. These two results are tightly coupled: the representation
of the problem impacted how the participants were able to traverse the
problem space, and the participants’ relative expertise in the problem
space affected how difficult they found the task. To better understand
this, we must understand expertise.

Space traversal and expertise

In computer science, there are many ways to traverse a graph: breadth
first search, depth first search, A* heuristic search, etc. While people are
less procedural, Larkin et al. identify two strategies that solvers use to
traverse the problem space: means-ends analysis and knowledge develop-
ment [Larkin et al. 80]. The former is similar to the behaviour seen by
Kotovsky et al., using probing then sub-goal unblocking; the latter uses
heuristics to avoid the probing and sub-goal analysis to immediately
start chaining actions. Further, the solvers who use each strategy can be
identified: means-ends analysis is indicative of novices in the problem
domain, while experts employ knowledge development[Larkin et al. 80].

The strategy of means-ends analysis, which is employed by novices, is
a type of ‘working backwards: The solver must identify what necessary
conditions must be met to move towards the goal,and then work towards
this new sub-goal [Kotovsky et al. 85]. Thus the novice begins to probe
the problem space, understanding what effect their actions have, and
then can begin to achieve their sub-goals. Maintaining this internal sub-
goal chain is cognitively demanding, using working memory that could
otherwise be devoted to the problem itself, not the ‘traversal state’; even
small problem spaces overwhelm human working memory [Kotovsky
et al. 85].> Worse, the high cognitive load required to employ means-
ends analysis can inhibit schema acquisition, a method of becoming an
expert[Sweller 88].
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Expert problem solving is best modelled through knowledge develop-
ment,in which powerful heuristics guide the expert through the problem
space [Sweller 88]. Because experts are familiar with the domain—and
thus the problem space—there is little to no ‘probing’ phase; they have
seen and solved similar problems in the past. Instead, experts can im-
mediately begin applying schemas, which are patterns that the expert
can recognise in the new problem space, and so immediately apply ac-
tions [Sweller 88]. Not only does this approach eliminate the probing
and sub-goal creation, this approach induces less cognitive load—the
utilisation of working memory—than means-ends analysis [Sweller 88];
experts will be faster and more cognitively efficient.

SUMMARY OF SECTION 2.I

Novices and experts alike solve problems by traversing a problem space,
applying actions to change state within the space such that they even-
tually reach a goal state. But their traversal methods are very different:
novices have a costly, means-ends analysis approach to searching the prob-
lem space; experts apply powerful heuristics called schema to efficiently
work from the start to the goal. Clearly, being an expert is advantageous:
can we somehow transfer these advantages to a novice? Or perhaps, can
we change the problem space so that our novice is already expert?

Representation

As Kotovsky et al. discovered, the way a problem is represented can signi-
ficantly impact how difficult the problem is to solve [Kotovsky et al. 85].
But why is this, and what exactly is involved in the representation of a
problem? In this section we consider representation, and what it means
for a problem to be represented effectively.

Modalities of representations

A representation is a view of a problem: the problem is expressed using
some representation. The representation itself belongs to some repres-
entational system: a collection of syntax and rules that generate some
agreed-upon notation. This is sometimes called an external representa-
tion because it exists outside the mind; there is a corresponding internal
representation that exists within the mind of the problem solver [Scaife
et al. 96].° Cheng links internal and external representations in two dir-
ections: an appropriate external representation can induce an effective
internal representation, while an effective internal representation encour-
ages external representation generation [Cheng 16]. We shall return to
effectiveness in the next subsection.

Restricting ourselves to external representations, we can classify rep-
resentations further. A common distinction is between ‘sentential’—a
sequence of characters composed only through concatenation [Stenning
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et al. 01]—and ‘diagrammatic’ representations.* Despite their apparent
value of ‘10 000 words’ [ Larkin et al. 87], diagrammatic representations are
often second-class in mathematics, even in highly visual domains such as
graph theory. Informally, diagrammatic representations are widely used
by mathematicians; formally, diagrams are often stripped from the discus-
sion, because mathematicians consider them unsuitable for proof[Inglis
et al. 09]. Even educational materials such as textbooks present only
sentential solutions to problems, obscuring any intuition that a diagram
can provide[Zazkis et al. 16]. Perhaps it is because diagrammatic sys-
tems are difficult to define: what makes a diagrammatic representation
diagrammatic?

Taken in the extremes, there is obvious consensus on which rep-
resentations are ‘sentential’ and which are ‘diagrammatic’ in mathem-
atics, standard propositional logic notation® is sentential, while Euler
diagrams® are diagrammatic. But as we drift away from these extremes,
the boundary becomes indistinct: positioning limits on a summation
is not concatenative, and hints towards some low-to-high relationship;
a table filled with words uses space and positioning to encode inform-
ation, but uses strings extensively. The distinction is difficult because,
as Giardino observes, there is no distinction to be made [Giardino 13].
Representations exist on a continuum, some with more diagrammatic
aspects than others; when we discuss diagrammatic representations we
are referring to representations exhibiting four diagrammatic aspects:

e direct encoding,

* syntactic constraints,

* syntactic plasticity, and

* heavy use of geometric and spatial attributes and relations.

Let us consider each of these in more detail.

DIRECT ENCODING

Diagrammatic representations drrectly encode types, structures, and rela-
tions of problems, rather than using indirect association as in sentential
representations [Stenning et al. 01].

Example 2.1. Consider a relation ‘to the right of> we can easily state an
instance of this sententially:

a is to the right of b
while observing that a is visibly /eff of b. By comparison,

b a

is a more direct encoding: a is literally to the right of b. This extends
to all levels: rather than using the word ‘square] diagrams can include
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? Note again that, visually,
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squares; rather than explain how nodes and arcs form a graph, we can
draw the graph. But this can also enforce specificity: we can sententially
state that ‘a zebra has some stripes; without making any claim to how
many stripes, but any particular drawing of a zebra has a fixed number
of stripes. This makes the representation easier to process at the cost of
reducing generality [Stenning et al. 95].7 v

SYNTACTIC CONSTRAINTS

Shimojima observed that rules of a representational system come in two
broad classes: intrinsic, and extrinsic® [Shimojima 01]. An intrinsic (or
syntactic) constraint is imposed by the syntax of the representational
system: the geometry, topology, or physics of the representation enforce
the rules. An extrinsic constraint is imposed by the problem solver: the
representational system allows for statements that the solver wishes to
avoid.

Example 2.2. Going back to our ‘to the right of” example, let us assume
a system where we can write a >, b, meaning a is to the right of b.”
Then we can state the following three facts:

a>.b,b>.c,andc >, a

Now; if we try to represent this in our ‘positional’ notation from earlier,
we hit an intrinsic constraint: we cannot arrange the letters on the page
such that this is true! The representational system has prevented us
from representing some state. So on a plane, the sentential notation is
too permissive: we failed to apply the extrinsic constraints necessary to
identify a nonsense statement. If we are working on a sphere, then the
positional representation is overly restrictive: the intrinsic constraints
are preventing us from encoding a valid state. v

SYNTACTIC PLASTICITY

Closely related to syntactic constraints is syntactic plasticity: the ability
for a representation to allow correct actions, but discourage incorrect
actions [Cheng 02]. While syntactic constraints are static expressiveness
limits of a representational system, syntactic plasticity is the dynamic mal-
leability provided by a representational system. A syntactically plastic rep-
resentational system allows actions to be executed that traverse a problem
space, while restricting the number of actions to prevent the solver from
becoming ‘lost’ in the problem space. In more graph theoretic terms: a
syntactically plastic representational system has a low out-degree for each
state in the problem space—the choice of actions is restricted—while
still ensuring there is a path from the current state to a goal state.

GEOMETRY AND SPACE

Finally, diagrammatic representations make use of geometry and space
[Stenning et al. 01]. The benefit of this is that it exploits the human
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visio-spatial reasoning system—the Towers of Hanoi variants presented
by Kotovsky et al. to participants consistently demonstrated that parti-
cipants more efficiently solved the ‘physically plausible’variants [Kotovsky
et al. 85]. Humans evolved in a physical world that obeys particular rules:
we are well-adapted to manage systems that follow these rules. But geo-
metry and space are limiting; just as we identified in direct encoding and
syntactic constraints, we forfeit abstraction and generality by following
the physical rules.

Effective representations

With a diverse range of representational systems at our disposal, some
with more diagrammatic aspects than others, we must consider: what
makes a representation effective? In the context of problem solving, there
are quantifiable results we might be interested in: lower cognitive load,
shorter times to generate a solution, or shorter solution paths. But in
this subsection we look at the representations themselves, not the results
they generate: in order to achieve these results, what properties do our
representations have?

We consider effective external representations in relation to the in-
ternal representations they induce. Green et al. created the ‘Cognit-
ive Dimensions’ framework as a guide on creating representations, but
note that it is not intended for a deep analysis of existing representa-
tions [Green et al. 981.° Instead we consider Cheng’s criteria for effective
representations [Cheng 16]. While 19 criteria are listed, we consider the
five categories in which the criteria exist:

e direct encoding,

low-cost inference,

* conceptual transparency,

* syntactic plasticity, and

e conceptual-syntactic compatibility.

Let us explore these, and compare them to the diagrammatic aspects.

DIRECT ENCODING

Cheng’s first criterion for effective representations is that it directly en-
codes the types, structures, and relations of the problem [Cheng 16]. This
is the same benefit that diagrammatic representational systems provide.
But why is this necessary for a representation to be effective? Consider,
for example, Duncker’s ‘candle problem® given a box of tacks, some
matches, and a candle, attach the candle to the wall [Weisberg et al. 73].
Participants will attempt to tack the candle to the wall, or melt some
wax to use as glue, neither being effective; rarely do they consider they
could pin the tack box to the wall and sit the candle in the box[Weisberg
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et al. 73]. Condell et al. call this inability to re-contextualise the tack box

functional fixedness: the ‘type’ of the box is wrong, because in the ‘repres-

entation’ people have, the box is a container for tacks, not a container for

candles as required for the problem [Condell et al. 10]. Tversky highlights

a similar point in regards to structure: people have a mental hierarchy to

categorise their environment, and benefit when the representation fol-

'In this case,the  lows the same hierarchy [Tversky 11]."! Thus a representation that more
hierarchy is that the boxis  directly encodes a problem is likely to be more effective than those that

restricted to tacks, and ) .6 e the problem indirectly.
there is no hierarchical

relationship to the candle;
the necessary hierarchy has  LOW-COST INFERENCE

box restricted to objects, ) . . . . .
which includes tacks and  The cost of inference in representations is a combination of factors: while

candles. When the tacks  the inferential actions themselves should be low-cost to perform, they

and box are given  must also be low-cost to identify [Cheng 16]. In diagrammatic represent-

separately, the participants o] systems, this is a mixture of geometric and spatial aspects, syn-
succeed much more often . . . .2 .

[Weisberg ctal. 73], TACtIC constraints, and syntactic plasticity. One notable variety of low-cost
inference is the free ride—an inference that can be made without spe-
cifically taking steps to make that inference [Shimojima 96]. Stapleton
et al. extend this to observational advantages: some representations allow
information to be observed ‘for free’ that would require purposeful in-
ference in other representations [Stapleton et al. 17]. A ‘free’ inference is
certainly low-cost; representations exhibiting observational advantages
are likely to be more effective than their disadvantaged counterparts.

CONCEPTUAL TRANSPARENCY

More difficult to define, conceptual transparency is the ability to ‘see
through’ the representation to its underlying meaning. Cheng decom-
poses conceptual transparency into five aspects: coherence and unam-
biguity; small conceptual gulf; integration of conceptual perspectives;
integration of granularity scales; and the comparing and contrasting
of typical, special, and extreme cases [Cheng 02]. These are themselves
2 See particularly ‘concept ~ difficult to resolve; we consider them in more detail in Section 3.4.
mapping;
SYNTACTIC PLASTICITY

We have already directly addressed syntactic plasticity in relation to dia-
grammatic representational systems: a representation should allow just
enough manipulation to reach a solution, but not so much as to allow
the solver to become lost.

CONCEPTUAL-SYNTACTIC COMPATIBILITY

Cheng’s final criterion for effective representations is conceptual-syntactic
compatibility. In diagrammatic representational systems, this is related to
the idea of syntactic constraints: a close relationship between ‘expressible’
and ‘valid’ ensures a more effective system [Cheng 16]. By analogy, in com-
puter science we discuss making illegal states unrepresentable [Minsky 11]
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for the same effect: if you cannot say something incorrect, then you have
reduced the ways in which you can make a mistake. Other mechanisms
through which representations have conceptual-syntactic compatibility
is by having a construction process which mirrors the problem solving
process, and by allowing for distinct phases in encoding, interpreting,
and making inferences [Cheng 16].

Bringing our conversation back to problem solving, we can consider
an effective representation to be one that provides a problem space in
which the solver is sufficiently expert: they already have access to low
cost inferences and powerful schema.

223 Analogical reasoning

When people change the problem’s representation—by creating a dia-
gram, or otherwise—they are creating an analogy between the original
representation of the problem and the new representation of it. Indeed,
one distinction on diagrammatic representations by Sloman is explicitly
noted to be between ‘Fregean™ and ‘analogical’ representations [Sloman  ©® Comparable to our
75]. A restricted form of analogy is translation, wherein a statement in ~‘sentential} named for
one representational system can be formally translated to a statement ~GOttlob Frege, an carly
. ; . . . . contributor to symbolic
in another representational system, and remain equivalent.” While this logic.
form of analogy can be useful, it only applies in limited situations: many Al v th
. . . ternative Y the new
representational systems are not sufficiently rigorous that we can assert -~ o
that two statements are equivalent. stronger such that it
Analogy can also be used for informal reasoning: there may not be a  implies the original
formal translation between representational systems, but by constructing ~ statement.
a ‘similar enough’ statement in alternative representational systems the
solver can exploit their knowledge of the analogical system to support
their problem solving process in the original system. Thagard concisely
breaks down the three aspects of analogy: pragmatics, semantics, and
structure [Thagard 92]. The first suggests that the purpose of the analogy
must be clear: to solve a problem, or to understand a concept, or to
persuade. This feeds into whether the analogy is ‘within-domain’—the
analogical representational system is the same as the original represent-
ational system—or ‘between-domain’—the analogical representational
system is distinct from the original. We focus on the latter. At the se-
mantic level, the surface attributes of both representations are considered:
which terms are shared, which features are preserved. Thagard uses the
analogy of pandas and televisions [Thagard 92, original quote from Dol-
nick 89]:

In evolution, as in television, it’s not necessary to be good.
You just have to be better than the competition.

Superficially, pandas are black and white, while some television pro-
grammes are black and white; this does not help the analogy. Terms
like ‘competition’ do carry across directly. But it is the third criterion,
structure, that makes the analogy successful: there is a thing in a com-
petitive environment, and scarce resources that are necessary, so for the
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thing to continue existing it must have successfully acquired enough
resources from the environment[Thagard 92]. Whether the thing is a
panda and the resources food and reproduction, or a television show
needing viewers and money, the structure of the problem remains.

Like Thagard, Gentner concluded that representations are best con-
sidered analogous through their internal structure[Gentner 83]: that
the deeper ‘shape’ of the problem is more important than the surface
details of the problem. Her work on structure-mapping constructs links
between two analogous concepts by unifying their internal associations;
this requires well-defined, hierarchical internal structure [Falkenhainer
et al. 89]. Gentner’s ‘Structure-mapping engine’ works on this philo-
sophy: it proceeds bottom-up, finding simple structural analogies and
propagating these up to higher level structural analogies that capture
more abstract relationships [Falkenhainer et al. 89].

Recommending a representation

We have seen that representations can affect how difficult a problem
is to solve; that diagrammatic representations often exhibit favourable
aspects for problem solving; and that analogies provide a strong founda-
tion for changing representation. Undeniably, changing to an effective
representation is useful [Ainsworth 08; Cheng 02; Cox 99; Grawemeyer
06]—the problem is that students do zot change to a more effective
representation [Superfine et al. 09; Uesaka et al. 10]. We want to work
towards supporting these students, and helping them change representa-
tion. Ideally, we want to support students in changing representation to
one that is appropriate for the problem and for their expertise. But how
should they be guided to change towards effective representations?

In the restricted domain of extracting information from a database,
Grawemeyer’s External Representation Selection Tutor (ERST) was able
to recommend an information visualisation to users to answer queries
[Grawemeyer 06]. The visualisations were scatter plots, sector graphs, pie
charts, bar charts, tables,and Euler diagrams; when supported by ERST in
choosing an effective representation, participants were more effective at
answering the queries [Grawemeyer 06]. But to consider tasks beyond in-
formation extraction, the literature on representation recommendation
becomes scarce. To solve a problem, we explore the representation design
literature: what factors are important when designing representational
systems, which we may consider for representation recommendation?

Representation design, and for our work representation recommen-
dation, is a product of three factors: what is the problem, who is ap-
proaching it, and why are they working on it? This combination of
factors determines the cognitive fit of a representation [Moody 09; Vessey
91]. Vessey introduces cognitive fit as the combination of the specific
problem under consideration, and the overarching task and context in
which the problem is encountered, which together influence the internal
representation a person constructs [ Vessey 91]. But implicit in Vessey’s
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discussion is that the person influences the internal representation; as
we saw earlier, an expert and a novice will be operating with different
internal representations: the novice’s internal representation is tuned
for search, and the expert’s for heuristics [Larkin et al. 80]. Moody makes
this explicit: cognitive fit is the interaction between the problem, the
person, and the task[Moody 09]. It is from this point where we launch
our work: this dissertation focuses on the problem, and how it influ-
ences the choice of appropriate representation; we briefly discuss the
cognitive considerations of the person, as context of the surrounding
rep2rep project; neither this dissertation nor the rep2rep project are yet
considering the task in which a problem has been encountered, but it is
expected to be future work.®

SUMMARY OF SECTION 2.2

A representation is a complex thing: itis an encoding of information into
the real world, which induces a specific internal representation in people.
A wide range of factors determine representational efficacy, and diagram-
matic aspects of representations align to allow for effective representa-
tions. By considering representation change as analogy, we have a model
to understand how and why people change representation; through cog-
nitive fit, we can begin to understand how to recommend a representa-
tion based on the problem being solved, the person solving the problem,
and the task and context in which the problem was encountered.

Automated heterogeneous reasoning

In the previous two sections we considered why and how representa-
tions are evaluated and recommended.”® In this section, we explore the
use of representations in computational systems. While artificial intelli-
gence researchers have attempted to build general problem solvers for
a long time—consider the aptly named ‘General Problem-Solving Pro-
gram’[Newell et al. 59]—most success has been had in solvers specialised
to particular domains. We focus on interactive and automated theorem
provers, as this class of software is forced to consider concerns similar to
ours: solving problems, representing them effectively, and considering
their users.

Theorem provers

Theorem provers are used by people to solve a very specific type of prob-
lem: given some assumptions, derive a specific conclusion. To make
progress, the set of assumptions is updated using already-proved theor-
ems (or axioms) through tactics. This maps directly to the problems space
we discussed: the current state is the current set of assumptions, a goal
state is any set of assumptions which contains the desired conclusion,
and the actions to move between states are the tactics. So the difference
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between the theorem provers is the state space they model—and the
representations they exploit.

Most theorem provers are homogeneous: that is, they use a single
representational system. This single representational system is usually
sentential, but the details vary. One family of theorem provers are those
based on Martin-Lof type theory: two notable members are Coq[Huet
et al. 04], and Nuprl[Constable et al. 86]. These systems use Martin-Lof
type theory as their representational system, and proofs are constructions
of a value that has the type which is an encoding of the theorem to prove.
A second notable family of theorem provers are those with HOL/LCF
ancestry [Gordon et al. 79]: HOL4[Slind et al. 08], HOL Light[Harrison
09], and Isabelle/HOL [Paulson 89]." These systems use a small core of
actions that is easily verified, and all other actions must be built on top of
this core. Both families use a syntax that is programming-language-like,
and purely sentential.

Equally homogeneous, but no longer sentential, are diagrammatic the-
orem provers. DIAMOND focuses on diagrammatic proofs of arithmetic
using grids of dots (Figure 2.2a), and ways of partitioning the grid [Jamnik
et al. 99]. The high-level approach of Diamonb is different to that of the
sentential provers mentioned earlier: it works with instances of a proof
and generates a generalised version automatically, rather than expect-
ing the person proving the theorem to work in the most general case
at all times. Edith, and its successor Speedith, focus on Euler diagrams
(Figure2.2b) and Spider diagrams (Figure 2.2¢), respectively [Stapleton
et al. 07; Urbas et al. 12]. Their proof structure more closely resembles
that of the sentential systems: from some diagrams you can construct
a new diagram; analogously, from some assumptions you derive a new
conclusion. These systems show that software is capable of supporting
diagrammatic representational systems, but they do not yet push the
bounds to heterogeneous reasoning: exploiting multiple representations.

Slight heterogeneity

Homogeneous theorem provers continue to grow in sophistication and
power, but their generality comes at the cost of speed: some problems
are best left to dedicated tools that have a better representation for that
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problem. In the HOL/LCEF tradition, these tools are integrated as ham-
mers [Blanchette et al. 16]. For example, Isabelle’HOL uses ‘Sledgeham-
mer’ to transform a higher-order logic problem into a first-order logic
problem before passing the transformed problem (along with relevant
lemmas) to automated first-order provers; the proof is returned to Isa-
belle/HOL, and validated in the verified core like any other proof[Paulson
et al. 10]. While not obviously heterogeneous—every representational
system involved is sentential—Isabelle/HOL exploits a system with a
more effective problem space by transforming the problem.

Isabelle has a second means of heterogeneous reasoning: the Trans-
fer package. The Transfer package was designed for code generation—
taking theorems and proofs to generate executable code for software
development. Raggi et al. repurposed Transfer into a heterogeneous reas-
oning toolkit[Raggi et al. 16], such that the ‘transfers’ happen between
object definitions. Raggi et al. defined different definitions of natural
numbers—for example, successors of zero, multisets of primes, and classes
of finite sets—such that different definitions produced novel proofs with
varying lengths. The formalised translations between the different defin-
itions allowed for free movement between the definitions, producing a
heterogeneous approach to theorem proving while remaining in purely
sentential representational systems.

2.3.3  Analogical proofs

Remaining briefly with homogeneous, sentential theorem provers, we
consider another mechanism by which they introduce heterogeneity:
analogy. We earlier touched on the power of analogy for human reason-
ers; here we examine how discovering analogies can improve the effect-
iveness of automated theorem provers.

Formal proofs in theorem provers often resemble trees: the conclu-
sion is the root while the branches are logical antecedents, continuing
recursively until the leaves are either the theorem assumptions, axioms,
or tautologies. For any given theorem, there are potentially many proof
trees; any are valid. But the trees can also be analogous: by substituting
predicates from one domain (for example, number of dots in a diagram)
with another (the value of a number), we can re-use the same proof tree
for a different, but analogous theorem [Boy de la Tour et al. 14]. This
approach generalises to partial proofs, allowing mixing analogies to con-
struct proofs for novel theorems.

Theorem provers’ analogies are similar to human analogies, in that
they are most effective when there are structural mappings: the overall
‘shape’ of the proof is what matters, not the superficial similarities of the
theorems or representations. Melis et al. implement and demonstrate the
efficacy of ABALONE [Melis et al. 99], an analogical proof constructor
and extension to the CIAM proof planner[Bundy et al. 90]. ABALONE
was able to construct proofs for theorems that CIAM was not; as with
human reasoners, analogies allow the automated reasoner to exploit its
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expertise from one domain in another domain.

Openproof, HETS, and MixR

We move now from homogeneous or purely sentential systems to hetero-
geneous reasoning systems. An early and notable heterogeneous system,
Hyperproof, was an educational tool for first-order logic that used a three-
dimensional chessboard environment alongside a more typical sentential
representational system [Barwise et al. 96-a]. The actions available in the
two representational systems were different, as would be expected; proofs
in the sentential first-order logic system are often more verbose than
their chessboard counterparts [Barwise et al. 96-8]. Barker-Plummer et al.
generalised Hyperproof to Openproof, a framework allowing heterogen-
eous reasoning with many representational systems [Barker-Plummer et
al. 08]. The framework avoids an znter-lingua®™ but maintains a common
proof state; this avoids some ‘lowest-common-denominator’ expressive-
ness concerns while maintaining a valid proof state. But as a result, there
is a tight coupling between the representational systems in Openproof:
there is a one-to-one correspondence between the objects and relations
in each representation, and formal translations between them.

An alternative heterogeneous reasoning framework is the Hetero-
geneous Tool Set (HETS) [Mossakowski et al. 07]. HETS uses a graph
of automated and interactive theorem provers, and so mixes the repres-
entational systems of those provers. The proof state and goals are sent
to the provers as representations in their own representational system,
meaning there is no tight coupling between the representational systems
in a HETS-derived prover. The complication is the need for comorphisms
between each of the representational systems: formal translations st
link each system [Mossakowski et al. 07].

MixR is a heterogeneous theorem proving framework that grew out
of a desire to integrate Speedith, the spider diagram reasoner, with Isa-
belle [Urbas et al. 14]. The MixR framework consisted of two parts: one
theorem prover that ‘owned’the proof state,and many ‘working’ theorem
provers that could modify the proof state. Much like HETS, MixR aimed
to reuse existing theorem provers, rather than develop specialist het-
erogeneous theorem provers; unlike HETS, MixR allowed for unsound
transformations between the representational systems used by each of
the ‘working’ theorem provers. MixR also introduced heterogeneous
statements—using multiple representational systems simultaneously—
through placeholders.” MixR, like all the heterogeneous systems we have
discussed, provides the option for heterogeneous reasoning. But it does
not encourage or guide heterogeneous reasoning: representation selection
is a human-driven process.

SUMMARY OF SECTION 2.3

This section explored how current software, designed to work towards
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solving problems alongside a person, manages the issue of representation.
For the most part, software systems maintain a single representational
system, whether sentential or diagrammatic. Some software is heterogen-
eous, notably HETS and MixR: these allow the user to combine multiple
representational systems together to solve a single problem, with the lat-
ter allowing for informal transformations between representations. But
the decision on which representational system to use at any given point
is driven by the user—while multiple representations may be available,
the user is 7ot helped to use them.

SUMMARY OF CHAPTER 2

This chapter has examined how human problem solving can be mod-
elled as traversing a problem space: the solver is attempting to reach goal
states by applying actions to the current state. The expertise of the solver
impacts their ability to navigate the problem space, but by selecting an ef-
fective representation we can induce a problem space in which the solver
is already expert. The nature of the representation determines its effect-
iveness, and specific aspects—each with trade-offs—are generally agreed
to be better; conveniently, these align with diagrammatic aspects of rep-
resentational systems. We considered how analogical thinking allows
for this kind of representation change, and how people struggle with
representation change; to support them, we examined the three factors
in representation recommendation: problem, solver, and task. We also
discussed how representations are used in software, specifically theorem
proving software: few support heterogeneous reasoning, and those that
do fail to support the user in selecting an appropriate representational
system. We proceed with a clear need to fill: to dissect and analyse prob-
lems and representations so that effective representational systems can
be automatically recommended to the human problem solver.
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COMPONENTS & DESCRIPTIONS

What are numbers and

what should they be?
— Ruchard Dedekind

THE FOUNDATION OF our framework is the component.' In this chapter
we address the first of our three research questions: what are problems,
representations, and representational systems, and how can we describe
them? We motivate and define what we mean by component; introduce
descriptions, which are structured collections of components; and intro-
duce cognitive properties and their relationship to components. We also
discuss why we use components as our encoding system for representa-
tions and representational systems. In Chapter 4 we will consider rela-
tionships between components in different representational systems; in
this chapter we consider each system in isolation.

Describing and comparing representations is a difficult, long-standing
open problem [Cheng 16], where distinct grammatical and inferential
components must be weighed against how they could potentially be
used. As such, the first step must be to define a common language that
allows us to describe and compare vastly different representations. When
developing the framework introduced in this chapter, we followed three
guiding principles:

* We must accommodate representations with different levels of
formality, such that formal languages and informal ad hoc systems
are equally describable;

* Representations of any modality must be describable, meaning the
framework features must not favour a particular way of composing
the constituent pieces; and

* The framework should capture the structure within representations.

We shall address how our formulation of components and descriptions
addresses these principles in Section 3.3.

This chapter contributes a language to describe problems, representa-
tions, and representational systems in terms of their components in a gen-
eral way;” thus, we address our first research question. Section 3.1develops
components, the building blocks of representations; Section 3.2 arranges
components into descriptions, and thus allows us to distinguish prob-
lems, representations, and representational systems; Section 3.3 considers
the philosophical position of components and descriptions as a general
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representation encoding; and Section 3.4 describes cognitive properties,
a concept related to components that are central to the rep2rep project.
Early versions of the ideas in this chapter were presented at the Con-
ference on Intelligence Computer Mathematics (CICM) 2019 [Raggi et al.
19], and later versions appeared at the International Conference on Tools
with Artificial Intelligence (ICTAI) 2020 [Raggi et al. 20-a]. A set of exten-
ded examples appeared at the International Conference on the Theory and
Application of Diagrams (Diagrams) 2020 [Raggi et al. 20-8]. Cognitive
properties, in Section 3.4, were extended upon at Diagrams 2021[Cheng
et al. 21].

Defining components

Components are the building blocks of representations: breaking repres-
entations down into smaller and smaller units eventually yields simple
pieces that can be composed together. For example, we can break down

nn+1)+2

into n, 1, 2, 4+, and =+, amongst other things; these are candidates to
become components. A component has structure that captures informa-
tion about pieces of a representation, and so consists of three parts: kind,
value, and attributes. Components can be classified into families, which
are the kinds: primitives, types, patterns, laws, and tactics. The value of
the attribute is a unique identifier, and for primitive components this is
often the ‘thing’ itself. Finally, attributes are a set of associated objects:
sometimes components, sometimes metadata.

Kinds, values, and attributes

Consider the ‘+’ symbol in an algebraic representational system. As a
fundamental concept,’ it cannot break down into anything else. The
component that we use to capture + consists of three parts: it is of kind
‘primitive; the value is the icon +, and it has attributes such as a type.
Together, the kind and value uniquely identify the component, while the
attributes anchor it in the context of a representation.

The ‘kind’ of a component is a classification that groups components
based on their cognitive status. We define five kinds: primitives, types,
patterns, laws, and tactics. Each will be explored in the following sections,
but to summarise:

* Primitives are the elements of a representation;
* Types describe the grammar of a representation;

e Patterns describe emergent groupings of primitives in a represent-
ation;

e Laws are the foundational true statements of a representational
system; and
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e Tactics are the actions that can be taken within a representational
system.

Each component has exactly one kind.
Component values describe a specific instance of a kind. For example,
a value associated with a component of kind ‘type’ is the type’s name:

(type, real, @)

is a valid component of kind type and value real. We adopt a more
succinct notation for components, dropping the parentheses and com-
mas, and omitting attributes completely if there are none. The above
component is thus written

type real

in our notation.

Attributes give context and information about a component, and
are sets of key-entry pairs where the keys are strings and the entries are
arbitrary. A common attribute is ‘type relating a primitive with its type.
Another attribute is ‘occurrences; counting how often the component is
observed to be used in a representation.

Putting all this together, we define a component [Raggi et al. 20-a].

Definition 1 (component). A component is a triple (k, v, a) where k is
the kind of the component, v is the value of the component, and a are
the attributes of the component.

Example 3.1. Consider a very simple representation, 1 + 1+ 1. From this
representation, we can extract a component like

primitive 1 : {type := real; occurrences = 3}

which includes a kind (primitive), a value (1), and two attributes (type,
assigned real, and occurrences, assigned 3). This tells us the representa-
tion this component is associated with has a symbol 1 that we interpret
as a real number, and it occurred three times. v

The pieces of components are now in place,so we turn to considering
the different kinds in greater detail.

Primitives, types, and patterns

The component kinds can be split into two groups: grammatical kinds,
and inferential kinds. The first group—consisting of primitives, types,
and patterns—has the components which encode the representation
notation. The second group—consisting of laws and tactics—has the
components which make the representational system useful as a problem
solving tool.
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5 The representations we
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heard representations
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PRIMITIVES

Primitives are the obvious building blocks of a representation: these are
the parts we sense (see, hear, feel, smell, or taste)’ and often register first
when reading and understanding a representation. Primitives do not
decompose: ‘x + Yy’ is not a primitive, but an empty table cell is. Filled
table cells are not primitives because they decompose into an empty
cell and a contained value. The point at which you decide something
no longer decomposes depends on the purpose of the representation.
The number 42 may or may not be a primitive: in a representation like
algebra, 42 is a primitive; in a representation describing how Hindu-
Arabic numerals are constructed, 42 would not be a primitive because
it decomposes into a 4 and a 2, both of which are primitives. We will
usually work with the former case, where 42 is a primitive.

Sometimes with primitive components® we can use the literal value
(using again our example of +, or x, or 52.7), but sometimes a primitive
cannot be written directly: line segments, or a circle, or shading. In these
cases we mark the value with a §$ sigil, reminding us that this is the name
of a primitive, not the primitive itself.

Primitives can have many different attributes, the two most common
being ‘occurrences’ and ‘typel The former tells us how often a primitive
occurs in a representation, while the latter associates the primitive with
its type. Other possible attributes include: size, colour, opacity, etc.,
depending on whether these are important to the representation.”

Definition 2 (Primitive components). A primitive component is a com-
ponent with kind ‘primitive’ the value is a conceptually indivisible build-
ing block of a representation.

TYPES

A type component describes a grammatical role within a representation.
The values of two components with the same ‘type’ attribute could be
‘swapped’ with each other in their representation, and their contexts
would still make grammatical sense. Simple examples would be type
number, type vertex, or type real.® Type components consist of ‘simple’
types, and the value of these components is the name of that type. In
the framework we define in this dissertation, the name of the type is not
interpreted: creating a type component with value ‘real’ creates a unique
type identifier whose name has meaning to the reader, but we make no
assumptions about the properties that the terms of this type might have.

Simple types like number or vertex are sufficient for some parts of a
representation, and are the only types that occur as type-kinded compon-
ents; but simple types are too limiting when dealing with representations
that involve functions or relations, so the ‘type’ attribute may contain
compostte types [Gordon et al. 79, p.46]. The type of the primitive + is
not a simple type, instead we assign it the composite type

number x number — number;
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The complete graph K7; every vertex is connected to every other vertex.

that is, + has a function type from a pair of numbers to a single number.”
Unlike simple types, we do interpret composite types: the symbols x and
— are taken as pair and function, respectively; brackets have grouping
and precedence semantics; juxtaposition is parametric type nesting, for

example the type ‘number set’ is the type of a set consisting of numbers.

These composite types allow us to construct larger expressions and so
begin to describe the grammar of the representation.”
Types rarely have attributes.

Definition 3 (Type components). A type component is a component with
kind ‘type’; the value is either a label for a simple type, or a label for a
parametric type along with a type variable. That is, the value of a type
component is defined as

type-value = simple-type | parametric-type
simple-type = label
parametric-type = type-variable label.

We denote type variables with a Greek letter.

Definition 4 (Composite types). A composite type is constructed from
the grammar

type = simple-type
| (type) parametric-type
| (2ype) x (type)
| (type) — (type)

where X is left-associative and — is right-associative, and brackets can
be dropped as necessary: parametric type constructors bind with higher
precedence than x, which has higher precedence than —. Note that
for the parametric type, (type) is substituted for the type variable from
Definition 3.

PATTERNS

Pattern components perform roles that both primitives and types play,
but extend the potential of both. A pattern describes an arrangement of
primitives, for example a complete graph (Figure 3.1) is a salient arrange-
ment of vertices and arcs. To experienced readers, these arrangements
can behave as if they were a primitive [Koedinger et al. 90]; the pattern
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describes a class of these arrangements. These arrangements also fill
a grammatical role: when all these pieces are in place, an object with
a potentially different type emerges. Thus, a pattern must have holes,
which primitives" can ‘fill and a type, which is the grammatical role the
complete arrangement of primitives will fill. Patterns can also have asso-
ciated primitives, which must be present for the pattern to exist; these
are not holes, because they cannot be substituted for something of the
same type: it must be this primitive.

Example 3.2. Consider two patterns: x+y,and f(x), where f,x,and y are
‘meta-variables’—we could replace them with any valid expression. In
the first pattern we have the primitive +. Its type, number x number —
number, tells us how the pattern is formed. Thus this primitive + has
an associated pattern

pattern + : { type := number;
holes := [(number, 2)];

primitives := [+] }

which captures the same idea: there is a pattern (named +) that consists
of two numbers and a + primitive which then behave as a number.
Pattern components that are based on primitives with a composite type
can be automatically derived from the primitive component.®

The second pattern, f(x), has no ‘generating’ primitives: there is no
primitive component with a compound type from which we can auto-
matically derive the pattern component. So we create the pattern com-
ponent ourselves:*

pattern functionApplication : { type := 3;
holes = [(et, 1), (ot = B, 1)J;

primitives := [(,)] }.

This is a function application pattern that consists of a function, some
input, and opening and closing parentheses which then behaves as a
value of the same type as the function output.” v

There is a third common type of pattern, sub-typing. This kind of
pattern is used to ‘re-interpret’ a term as a different type. For example,
all integers are numbers, so we have a pattern

pattern integerAsNumber : {type := number; holes = [integer]}.

This example allows integers to be used where any number would be
appropriate. Consider the utility of this in typing an operator like ‘+
rather than needing to define ‘separate’ addition operators for each nu-
merical type—plus-for-integers, plus-for-reals, and so on—we can instead
define it for one super-type ‘number; and require types such as integer
or real be sub-types.
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Definition 5 (Pattern component). A pattern component is a component
with kind ‘pattern’; the value is a label denoting a salient arrangement
of primitives. A pattern must have the attributes ‘type’ and ‘holes’ the
multiset associated with the holes attribute must not be empty.

We divert briefly to introduce terms. Intuitively, terms are a simple
concept: 2 + 3 is a term, or Figure3.1 is a term.'® Typically, terms are
defined as combinations of symbols arranged so they adhere to some
grammar [Chomsky 56], for example using types[Coquand 06]. While
this would be a term in our system, we consider constructions more
broadly. We define terms to be fully instantiated patterns. That is, a pat-
tern in which all the holes have been filled with either primitives or
terms.” Terms are not components themselves, but are directly derived
from components; as such, they play an important role in the rep2rep
framework.

Between primitives, types, and patterns, we have described the gram-
matical side of a representation: we have the ‘pieces’ (primitives) of the
representation, and the rules for combining them (types and patterns).
In the next subsection we turn to the inferential side of a representa-
tional system, and explore how components can capture the utility of
representations as problem solving tools.

Laws and tactics

The inferential aspects of a representation are captured by the law-kinded
and tactic-kinded components. Laws are like theorems at a certain level
of abstraction: the things that are assumed to be true.”® For example,
‘dots’ might have a cardinality preservation law where combining two
dot arrangements does not change the overall number of dots. Simil-
arly, a Bayesian Algebra representational system would include Bayes’
Theorem" as a law. Tactics, in contrast, are the things you do with the
laws and patterns of a representation [Paulson 89]. Our dots might have
the tactic ‘regroup, where the dots are moved or reinterpreted as different
collections. Our Bayesian Algebra representational system—Iike most
algebraic systems—will have a ‘rewrite’ tactic, where an expression is
rewritten by applying particular laws.

LAWS

A law component usually has very few attributes. It may have a count of
its occurrences in a problem, and sometimes an informal description as
metadata.

Definition 6 (Law component). A law component is a component with
kind ‘law? the value is a label denoting a known true statement for the
representational system.
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TACTICS

Tactic components are expected to have two attributes: ‘laws; defining
how many laws the tactic is parameterised over;*® and ‘patterns; similarly
defining how many patterns the tactic is parameterised over. Consider
our rewrite tactic in algebraic representational systems:

tactic rewrite : {laws := 1; patterns == 1}.

That is, to fully apply the rewrite tactic one must choose one pattern (the
thing you want to rewrite) and one law (the equality—or implication—
that we apply). For example, applying the rewrite tactic to the pattern
x +y and the law ‘+-commutativity’ produces the pattern y + x.*!

Definition 7 (Tactic components). A tactic component is a component
with kind ‘tactic’; the value is a label denoting a method of manipulat-
ing a representation. A tactic may have the attributes ‘laws’ and ‘pat-
terns’—both integers—which must be supplied if the tactic is conceptu-
ally parameterised over a non-zero number of laws or patterns.

We have already called out one common tactic, rewrite, but there
is another common tactic worth introducing: ‘observe’ Observation is
extracting information from a representation without formal inference.
Only some representations exhibit observational advantages[Stapleton et
al. 17], so the tactic of observation can range in utility from pointless to
fundamental—at one extreme, you can observe only what is explicitly
stated, nothing else; at the other extreme, representing the problem state-
ment allows us to immediately observe the solution. That observation
occurs without inference is key to its potential as a tactic: no laws are
necessary, simply patterns. We illustrate this with the following example.

Example 3.3. Consider the following sequence of probability statements.

Assumption:
Pr(X) = 0.5
Pr(Y) =0.6
Pr(XNY)=0.
Deduction:

Pr(XNY) =Pr(X) - -Pr(Y) = XandY are independent.

Not a difficult chain of working, but it does require inference—specif-
ically the final line. Now consider the geometric representation of the
same probability statements in Figure3.2. Note that the two dividing
line segments meet at a single point: the segments do not get ‘split’ This
observation is sufficient to conclude that X and Y are independent events;
no calculations or inference is necessary. That is, the pattern of ‘line
segments crossing, without any other laws, is sufficient. By representing
the assumptions correctly, the conclusion comes “for free v
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Y Y

A geometric representation of two independent events, X and Y.

Observation is a simple, powerful tactic that is widely used in dia-
grammatic—and sometimes sentential—representations, and captures
the expressive capabilities of representations which exhibit observational
advantages.

SUMMARY OF SECTION 3.1

Components are the building blocks of representations, defined as triples
of kind, value, and attributes. The kind partitions components into five
categories, three notational—primitives, types, and patterns—and two
inferential—laws and tactics. Attributes give information about com-
ponents, linking them with other components through relationships
such as typing. Representations may be described by many components,
or very few components; some representations, when broken down, will
have components in common, while others will not share any.

Representations, systems, and descriptions

The essence of representations, and representational systems, can be cap-
tured by sets of components; these sets are called descriptions. Descrip-
tions come in three flavours: RS-descriptions for representational sys-
tems, R-descriptions for specific representations, and Q-descriptions for
problems posed within representations. But before we get to descrip-
tions, we must disambiguate what we mean by representation and repres-
entational system.

Representations and representational systems

A representational system characterises a class of representations, while
a representation is a specific instance of a representational system. Using
our example in Figure1.1 from the introduction, the specific algebraic

equation

i . nn+1)

i=1 2
is a representation, while ‘algebra’is the representational system in which
it is expressed. The system can be instantiated into many different rep-

resentations: algebra can be used to construct many expressions and
equations.
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2 We consider only
external representations:
those that can be shared
between people. Internal

representations—those
inside people’s
minds—are an important
class of representations,
but are outside the scope
of this dissertation. We
discussed them briefly in

Section2.2.

3 This proof is only for
natural numbers, but let
us keep it simple!

24 The constructive w-rule
is similar to induction,
broadly stating that if you
have a procedure to
generate a proof for any
n € N, the then proof
holds forall n € N.
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Representations® are an encoding of information into a medium for
the purpose of communicating that information. Each representation
is specific to the information it is communicating. The pieces present
may or may not have meaning, and they may or may not be important;
yet each piece is interpreted by the reader. This interpretation is guided
by rules of grammar, and the validity of a representation is determined
by its adherence to that grammar. An effective representation follows
the grammar, uses pieces of syntax that convey important meaning, and
successfully communicates information to the reader that is equivalent
to the information intended by the author.

In order for the representation to succeed—to be interpreted cor-
rectly by another party—the ‘rules’ of extracting its information must
be at least partially standardised. When a representation adheres to a
grammar, we ask where the grammar comes from. When we consider
the pieces of syntax in a representation, we ask where those pieces of
syntax come from. This abstracts over individual representations to form
a family of related representations that all use subsets of the same syntax
and adhere to the same grammar. This abstraction is the representa-
tional system. Representational systems, unlike representations, are not
about a single instance. No representational system is best at everything,
and there are always trade-offs: ideas that are succinct and obvious in
representations constructed in one representational system can become
verbose and confusing when encoded as a representation in another
representational system.

Example 3.4. Addition is commutative, and this can be shown by induc-
tion (assuming addition is already shown to be associative).” For some
fixed a and induction variable k, the base case when k = 0 is trivial:
a+0=a=0+ a. Assume a + k = k + a. The recursive case is also
straightforward:

a+(k+1)=(a+k)+1 (Byassociativity)
= (k+a)+ 1 (Byinduction hypothesis)
=k+ (a+1) (By associativity)
=k+ (14+a) (Byinduction hypothesis)
=(k+1)+a (Byassociativity)

This is quite a lot of work for a simple property of addition. Instead,
we could represent natural numbers as dots, and present the obviously
generalisable solution:

OO0 OO = 00 00O

That is, for a row of a+b dots, it does not matter if we split the row a on
the left and b on the right, or b on the left and a on the right. Formally,
this generalises with the constructive w-rule [Baker et al. 921,* but this is
trivial for the human visual reasoning system. So to prove commutativity
of addition on natural numbers, a dot representational system is superior
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to an algebraic representational system. Obviously, to state that the dots
system is superior to the algebraic system is zot universally true. v

We must capture a representational system in our framework to de-
termine which is appropriate to solve problems. Thus for representa-
tional systems we create RS-descriptions, which contain the components
describing the associated representational system; similarly for represent-
ations we create R-descriptions[Raggi et al. 20-a]. In practice, an RS-de-
scription can be thought of as the union of multiple R-descriptions: each
are sets of components, one is just ‘bigger’ In R-descriptions, components
may have the attribute ‘occurrences; while components in an RS-descrip-
tions must 7ot have this attribute: RS-descriptions are describing the
abstract system, not a specific representation instance. We have already
seen the occurrences attribute: this captures how often a representation
uses a particular component. For example, the R-description of x +y +z
has the components

primitive + : { type := number x number — number;

occurrences .= 2 }

and
primitive x : {type := number; occurrences := 1}

(and others) whereas in the RS-description of algebra the same compon-
ents are included without the occurrences attribute.

Definition 8 (RS-description). An RS-description is a set of components
that are conceptually grouped as part of the same representational system.
Components must not include an ‘occurrences’ attribute.

Definition 9 (R-description). An R-description is a set of components
that are conceptually grouped as part of the same representation. The
components may have an ‘occurrences’ attribute.

Descriptions are sets, so each component is in the description at most
once. Occurrences allow for a sort of indirect multiplicity. We could not
simply allow multiplicity through multisets—including a component in
the set more than once—as this introduces two ambiguities: we cannot
include components with zero occurrences (a potentially useful ability to
capture background understanding), and we cannot distinguish between
‘occurs once’ and ‘occurs some unknown number of times, the latter of
which we can encode by not including any occurrences attribute. By
annotating components with this attribute, we allow for more expressive
descriptions that better reflect the representation being described.

A particular subset of representations are problems, representations
that have a specific purpose: to present specific information that must
be used to derive new information, or verify existing information. We
introduce the O-description,” an R-description equipped with an informa-
tional importance function (importance, for brevity).?* Importance reflects
the necessity of a piece of information in understanding and solving

S1

= Q for ‘question

26 In practice,
Q-descriptions do not
consist of components,
instead they consist of
importance-component
pairs.
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the problem represented by the representation. The value of importance
ranges from O to 1, where 0 is irrelevant and 1 is essential. In our x +y+z
example we say the + primitive has importance 1: that is, the + is es-
sential to the problem. The task of assigning importance is challenging;
currently, analysts assign importance while constructing descriptions,
which we shall expand on in Section 5.1.1.

Definition 10 (Q-description). A O-description q is an R-description
equipped with an importance function importance,” that maps each
component to a real value in the interval [0, 1]. That is, for a given R-de-
scription 1, we define the Q-description q derived from r as the pair
(T, importanceq) where

importanceq 1 — [0,1]
is defined by an analyst.

Descriptions, in a practical version of our framework, exist in two
states: as a textual data format that we work with, and as a data struc-
ture within the robin software. These are equivalent in that one can be
converted to the other without losing information, but are conceptually
slightly different. We shall consider each in turn, beginning with the
data structure because it is simpler, and then turning to the data format.

Descriptions as a data structure

The data structure backing descriptions is the set. Components have no
inherent order, nor should the same component be listed twice (where
‘the same’ means equal kind and value).”® By using a set, we are able to
quickly find common components between representations (intersec-
tion), add and remove components, as well as determine if components
are present (contains and subset).

Within the set, components are stored as a triple consisting of a kind,
a value, and an attribute list.”” The kind is a datatype

datatype Kind = Primitive | Type | Pattern | Law | Tactic;

and so is limited to exactly these values. A value is more complex, because
it can contain more types of data. We break it down into five main
categories:

datatype Value = Label of string
| Number of int
| Boolean of bool
| Type of Type.T
| Raw of string;
where Type. T is our custom ‘type’ datatype. While components should
contain only base ‘types’ (i.e., strings) using a consistent ‘type’ datatype
allows us to operate directly with the value at other places in the code.
Attributes are a list of ‘associations’ that we break into six categories:
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datatype Attribute = Type of Type.T
| Holes of Type.T M.multiset
| Primitives of string list
| NumFunction of string x real®
| StringFunction of string * string’
| Feature of string;

We have seen the first three before: these are the type, holes, and primit-
ives attributes from patterns. The holes’ multiset type collects the types
that fill the holes, but retains the multiplicity of each type. The final
three are more generic, taking an arbitrary label and associating it with
a number, a string, or nothing.

Using these types and a set functor, we are able to efficiently encode
and operate on descriptions. This gives us an interface to develop against
when algorithmically recommending suitable representational systems.

Descriptions as a format

We represent descriptions in a plain text format.* A file typically contains
a single description (either an RS-, R-, or Q-description) that lists the
components. There are also specific commands to import and extend
existing descriptions. The syntax is based on Standard ML.

A description is declared with a representation block, where the
assigned name is the name of the representational system.

representation Algebra = rep
import primitives from LatinAlphabet;
import terms as primitives from RealNumerals;

end;

The first few lines are ‘imports; showing how this description is built
on existing descriptions. The first import lifts the letters directly from
the LatinAlphabet representational system; the second import lifts the
numbers—which are terms, which are fully-instantiated patterns—from
the RealNumbers representational system, but in this representational
system they are primitives.

Next come the component declarations. Components with the same
kind can be written on the same line. We group all components with
the same attributes:

types integer, real, number, bool, formula, proof;
primitives |, =, >, <
where type = number *x number —> bool;

These are converted into the expected components, for example
primitive < : {type := number X number — bool}

was derived from the < in the description. This extends to larger struc-
tures where there are multiple attributes; for example, the earlier func-
tion application pattern component could be written:
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pattern functionApplication
where holes = ['a: 1, 'a -> 'b: 1],
primitives = [(,)],
type = 'b;

In this way a complete representational system or representation can be
described in a machine-readable way.”

Analysts use five specific keywords to assign importance:** essential,
instrumental, relevant, circumstantial, and noise. In our x + y+z
example, the primitive + is essential:

essential primitive +
where type = number * number —> number,
occurrences = 2;

These keywords correspond to values ranging from 1 down to 0.

Moving between descriptions

RS-descriptions, R-descriptions, and Q-descriptions are very closely re-
lated, so the obvious question arises as to whether we can transform one
to the other. The answer is partially: we can go from an RS-description
to an R-description (although it would lack occurrences), but we may
need many R-descriptions to form an RS-description.

By creating an R-description from an RS-description, we are specify-
ing the representation of a specific statement as it would appear using a
representational system. By analogy to human language, we are creating
a specific phrase by using particular aspects of the language. Much like
we do not use every word in the language to write a single sentence, we
do not use every component in the RS-description to create an R-de-
scription. By selecting just a subset of the components, we specialise the
description to be about a specific instance. R-descriptions include an
occurrences attribute: analysts®® must add these to each component.

Conversely, we cannot necessarily create an RS-description from a
single R-description. Instead, we must union many R-descriptions that
describe representations that belong to one representational system. The
union of the descriptions creates a more comprehensive description of
the representational system: the more diverse the R-description compon-
ents are within that one representational system, the more comprehens-
ive the subsequent RS-description will be. Because RS-descriptions do
not have the occurrences attribute this is discarded from the R-descrip-
tions when unioning.

Moving between R- and Q-descriptions is a matter of stripping or
including an importance function—or more concretely, pairing each
component with its importance.

Example 3.5. Consider the following representation of the sum of con-
secutive integers (a fragment of Figure1.1).
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OO0O00OO0O0
OO0OO0O0OO0O0
OO0O0OOO
OO0O00O0OO
OO0O00O0O

n+1

=t

We have a rectangle of dots, which we divide in two diagonally, forming
two triangles. Thus we have a component of the ‘dot-diagram’ represent-
ational system:

pattern dot-triangle : { type := dot-arrangement;

holes := [(dot, O(n))] }

This pattern component would exist within the RS-description; to
relate it to this representation, we add the ‘occurrences’ attribute:

pattern dot-triangle : { type := dot-arrangement;
holes := [(dot,n)];

occurrences ‘(= 2 }

That is, we have a triangle of dots fwice: once in white, once in grey. This
component can now exist within an R-description.

Finally, if we bring our representation back to the context of com-
puting the sum of consecutive integers, we can consider this component
within a Q-description, where we assign it an importance. Giving the
name t to the dot-triangle component, we have

importance(t) = 1.0

indicating that the triangle is essential to the problem. v

SUMMARY OF SECTION 3.2

A set of components all derived from the same source form a descrip-
tion. We use RS-descriptions to capture representational systems, which
hold all components that any instance representation might be described
using; these components must not have the ‘occurrences’ attribute. A
representation is captured through an R-description, which is primarily a
subset of some RS-description, but with the ‘occurrences’ attribute popu-
lated appropriately. Finally, problems are described with a Q-description,
which is an R-description with an importance function, assigning each
component a value between 0 and 1 based on how critical it is to cap-
turing the problem. In our implementation, we use sets of component
triples for R- and RS-descriptions, while we use a set of pairs consisting
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of the component triple and the importance to encode Q-descriptions.
We also provide a textual format for descriptions, which we use as an
input mechanism for our implementation. Complete examples using
this format are in Appendices F and G, from the extended example in
Chapteré6.

Guiding principles

Components and descriptions allow us to encode representations and
representational systems in a flexible way that is suitable for computer
processing. But we made many decisions to reach this point, each with
benefits and costs. Recall the motivation of this work: we wish to be
able to suggest appropriate representation changes between representa-
tional systems based on the problem and the person. In this section we
discuss the three guiding principles we have followed when designing
the rep2rep framework:

* Support for various degrees of system formality;
e Agnostic towards modality; and

e Allow structure to be captured when appropriate.

Formal and informal systems

Changing representation is greatly simplified if there is an automated
translation between representational systems. For example, spider dia-
grams are a formal representational system which has been implemented
as an interactive reasoning system [Urbas et al. 12]. Spider diagrams are
equivalent to a fragment of first-order predicate logic [Stapleton et al. 04],
and so can be mechanically translated to this fragment. In general, given
equivalent representations in each representational system, we would
be able to define measures of suitability at a cognitive level; we would
discard a representational system that cannot be translated to, because
we have ‘perfect’ options.

But translations are not simple to construct, even when two repres-
entational systems are provably expressively equivalent. Further, many
systems do not have a formal definition to compare when evaluating
expressiveness. Instead, people construct fuzzy, ad hoc transformations
between representations, which are a type of analogy. In addition to
formal representational systems such as logics, this is what we aim to
capture: informal representations that may or may not be formalisable,
and transformations between them.

Rather than fight the informality of most representations, and thus ex-
clude them as candidate re-representation targets, we choose to embrace
it when designing our framework. We do not require complete, accurate
descriptions of the representation, and instead give a flexible set of tools
to describe the representations as they are and as they are used, whether
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this is logically sound or not. We do not validate the consistency of a
representational system, and we do not map it to some underlying logic
of our choosing. As a result, descriptions are not unique; the decisions
made when creating descriptions influences the final representational
system recommendation. While these decisions can mean changes in the
output of our algorithm,” the changes and subsequent recommendation
better reflect the intent of the analyst encoding the representation.

Mode-agnostic encoding

Many, and most well understood, representations are sentential. That is,
they are written as strings of symbols, and are read in a linear fashion:*®
the symbols are read one after the other, and the only rule of construc-
tion is juxtaposition (writing the symbols next to each other). Thus
sentential representations are simple to describe, and there are many
tools for doing so. Further, sentential representations are the ‘default’ on
computing systems.”” As a result, it is easy to slip into a sentential-first
mentality—to the detriment of other modalities, potentially leading to
an unfortunate feedback loop where sentential representations are bet-
ter supported and so get described more frequently so become better
supported. Our framework must avoid this sentential-first trap if it is to
accurately describe non-sentential representations.

Let us explore when sentential-first assumptions break down. Sen-
tential representations are conceptually rooted trees, sometimes explicitly
with parentheses, sometimes implicitly through the grammar. This is
true whether we consider programming languages,*® formal languages,
or natural languages [Carnie 07]. But trees have a restriction: every child
has exactly one parent, and there can be no cycles. In representations,
this implies they have a disjoint ‘sub-sentence’ structure. Such a structure
is not universal.

Example 3.6. Consider a matrix with m rows and n columns.

X111 X2 Xin
X211 X2 X2n
Xml Xm2 Xmn

Converting this to a tree, there are two obvious truths: there is one
root (the entire matrix), and there are m x n leaves (the x;; elements).
But there is clearly more structure than just a matrix and the elements:
there are rows and columns. But each element exists in both a row
and a column: it has two parents, and neither takes precedence over
the other.* This produces a parse graph, rather than a parse tree. Other
equally valid decompositions also exist, for example splitting the matrix
into quadrants of size m/2 x n/2. There is no one correct way to read
the matrix, which is part of the strength of this representation. v

To avoid introducing assumptions that representations might break,
we have designed the framework to be flexible. We do not demand
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a grammar, nor a consistent type system. Through patterns you can
introduce ambiguous grammars and sub-typing. While this restricts
our options for automated tools to parse representations, the gains in
flexibility mean we have a viable framework for describing a diverse
range of representations.

Degrees of structure

Finally, we need to capture the structure of a representation and repres-
entational system. We consider structure to be encoded as relationships
between components in a description. Structure is extremely diverse,
and can be difficult to capture: sometimes it is the way in which terms
are composed (the grammar structure), while sometimes it is how pieces
come together (a pattern structure). Structure is a form of bias* in a
representation, which is both helpful and harmful. With no structure
(and no bias), the components in the description are unrelated; with too
much structure, valid interactions between components are precluded.
So how and where do we encode structure to descriptions?

The rep2rep framework provides two means to encode structure:
attributes, and patterns. Attributes are used for simpler relationships,
the obvious example being typing. If we imagine structure as a graph,
then the attributes encode the arcs in the graph. Patterns encode more
sophisticated relationships, when many components come together to
act as a new unit. In our hypothetical structure graph, patterns are sub-
graphs. These two tools allow analysts to capture the structure within
their representations and representational systems within their Q-, R-,
and RS-descriptions.

Example 3.7. Grammar—whether through types or patterns—is the
most obvious form of structure, as we outlined in the previous point on
mode-agnostic encoding. We use the attribute ‘type’ to explicitly link
a primitive or pattern component to a type component. But there are
other varieties of structure. Consider a representation such as a line chart:
the relationship between the legend and the plot is not easily encoded
through types, but through patterns® we can state the relationship quite
succinctly:

pattern keyLineAndLegend : { type := relationship;
holes := [(line, 1), (legend-entry, 1)] }

That is, there is a relationship between lines and legend entries, which
acts as a key to read the chart. The type ‘relationship’is a dummy type,
existing at the level of the rep2rep framework: it is more for the author
of the description than any part of the framework. The significant part
is the holes: the pattern creates a context in which the two hole types are
related. v

We defer the decision of how much structure is appropriate to the
analysts encoding representations and systems. For example, we do not
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require every primitive to have a type. Instead, we aim to provide a frame-
work that allows analysts to gradually add the structure in the represent-
ation, as and when it becomes necessary. Similarly to our earlier point
about mode-agnostic encoding, we try to make few assumptions about
the structure that representations may have. Patterns and attributes are
general-purpose structure descriptors, where we encourage analysts to
add as many or as few patterns or attributes as necessary. We do not force
the use of hierarchy trees or strict well-typed expressions. As we will
explore in Chapter 4, we attempt to exploit what structure is present, but
do not penalise a lack of structure.

SUMMARY OF SECTION 3.3

Components and descriptions are intended to allow us to consistently
catalogue problems, representations, and representational systems that
are extremely diverse. We worked to ensure that the framework followed
three principles: formal and informal representations and systems were
equally supported; no modality (sentential, diagrammatic, or otherwise)
was favoured above any other; and the structure of the representation or
system could be encoded as loosely or strictly as necessary. This ensures
our framework is widely applicable, whether in our specific domain of
interest—mathematics education—or more broadly.*

Cognitive properties

The components and descriptions we have outlined so far capture the
informational aspects of representation: the grammar, the primitives, the
knowledge, and the inference rules. But components are not sufficient to
describe how people understand representations: we need to capture as-
pects of interpretation and understanding. This process of transforming
a representation into an znternal mental model dictates how understand-
able and effective a representation will be for each specific person.

This section covers material that is parallel to the main point of this
dissertation. We provide it as context and motivation for some of the
decisions we make. Cognitive properties, and work around including
the user, is a prominent focus of concurrent and future research done by
the rep2rep research group [Cheng et al. 21].

Map of cognitive properties

We wish to capture important aspects of the mental state that a rep-
resentation allows when being used by particular people.® To do this,
we consider a representation along two dimensions: a level of granular-
1ty, a spatial consideration; and process time-scale, a temporal consider-
ation[Cheng et al. 21]. Within these two dimensions we identify nine
cognitive properties, which we will break down shortly. These properties
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Whole
SubRS Variety

Atomic Composite

Registration | Registration

Semantic Number of Types
Encoding Concept Mapping
erence Quantity Expression Complexity
Scales Inference Type Branching Factor
Solution | Solution Depth

The cognitive properties considered by the rep2rep framework. Each column is
a representational level of granularity, while the rows are different time scales of
cognitive processes.

are positioned according to their granularity and their cognitive process
time scale in Figure 3.3[Raggi et al. 20-a].

To understand how the use of space impacts the cognitive processes
of the user, we consider the levels of granularity. This broadly correlates
to the level of detail the user is considering, ranging from the specific
pieces of the representation, through the structures that emerge, to the
big picture of an entire representation.*¢

The second dimension, the cognitive process time scale, uses the ap-
proximate time it takes for a process to occur to determine the method
through which is occurs [Anderson 02]. For example, reactions (in the
sense of reacting instinctively to stimuli) happen in the space of milli-
seconds, and at a biological level. We start further up the scale, above
biological reactions, but still observe such time scale distinctions. Regis-
tration processes are recognition tasks that occur in under a second; se-
mantic encoding associates meaning after registration, and takes seconds;
inference can take many tens of seconds; and complete solution paths
to problems can take minutes¥ [Anderson 02].

Now we look into the individual cognitive properties.

Registration This is the process of identifying and locating a particu-
lar term within the representation. The difficulty of this is typ-
ically dominated by the method of locating: pop-out effects are
faster than using an indexing system,* which is in turn faster than
search. ‘Distractors’ also impact registration: similar-appearing
terms distract from and delay the registration of the true target
term [Alexander et al. 12].

SubRS Variety This determines the ‘heterogeneity’ of a representation.
Representations that mix diverse representational systems exhibit a
greater difficulty through context switching and referencing. The
more similar the mixed representational systems, the less costly
this variety is [Someren et al. 98].

Number of Types Assigning types is part of the semantic decoding of

a representation, and many types typically indicates more complex
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semantic processing. Limiting the number of types makes for a
simpler representation.

Concept Mapping While the number of types captures how complex
the grammar or semantics might be, concept mapping captures
how effectively the semantics map to the syntax [Zhang 97]. There
are five types of concept mapping: redundancy, where two or more
different components of a representation are used for one concept;
overload, where one component is used for two or more con-
cepts; excess, where there are components without any associated
concept; deficit, where there are concepts without any associated
components; and bijection, where one component maps to one
concept.

Expression Complexity To understand when a concept is encoded us-
ing large expressions in a representation, we estimate how large
plausible parse trees of expressions can become: expressions with
large parse trees are typically more difficult to understand than
expressions with small parse trees.

Inference Type We classify tactics into five different inference types:
assign (to give a name to a term), match (to unify two terms),
substitute (to replace ‘name primitives’ with appropriate terms),
calculate (to apply domain logic to rewrite terms), and transform
(to substitute subterms with terms) [Anderson 02; John et al. 96].%
The difficulty increases as we move along the scale.

Branching Factor When applying tactics to reach a solution, the user
must decide which tactic to apply. This relates to the branching
factor of the solution space, where more choices means a more
difficult decision on which tactic to apply.*

Solution Depth Similarly to branching factor, we need to consider how
many steps it may take to reach a solution. The farther away the
solution, the more difficult it may be to reach.

Quantity Scales Specifically when dealing with quantitative represent-
ations, we can partition numerically-typed terms into four classes:
nominal, for incomparable™ values; ordinal, when the values have
an inherent order; interval, when the magnitude between values is
meaningful; and ratio, when there is a meaningful multiplicative
relationship [Zhang et al. 95].

Cognitive properties have a certain cost that is specific to the combin-
ation of a representation and the person using the representation. For
example, a representation consisting of a simple expression has a low
cost for the expression complexity cognitive property, with the cost even
lower for expert users of that representation. These costs influence the
effectiveness of a representation for a particular user.
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2 Summation notation
has two variants: here we
have the ternary variant,
which takes a lower
bound, an upper bound,
and a function of the
variable introduced by the
binding; a binary variant
takes a set and a function
on the elements of the set,

e.g > ex f(x).

33 Consider the perpetual
confusion over operator
precedence and
BEDMAS/BOD-
MAS/PEMDAS.

54 Note that although
integers are not closed
under division, they are
still considered to be
‘ratio’ values because they
have a meaningful
multiplicative
relationship: six is double
three, for example.
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Example 3.8. Consider the algebraic notation expression

ii: n(nz-i-]).

i=1

What might the cognitive properties look like for specific features of this
representation?

Registration The individual tokens appear in fixed positions, there is
no need to search. For example, we know where the limits are in
the summation.

SubRS Variety This is a purely sentential representational system, so
there is no ‘variety:

Number of Types This system has a single ground type, integer, which
greatly simplifies understanding the representation. The right side
also uses only three binary operators, meaning there is just one arity
to consider—there is no mix of unary and binary operators. The
left side is much more sophisticated, using summation notation,
which is ternary over sophisticated types.*

Concept Mapping Algebraic notation largely maps a single symbol to
a single concept: a 1is a 1, for example. Algebraic notation does
have three components for multiplication: X, -, and juxtaposition.
This results in some redundancy.

Expression Complexity While this particular expression is quite con-
strained, algebraic notation can become exceedingly complicated
to parse.”

Inference Type We are able to apply many inferences in algebraic nota-
tion, the most salient being substitute, calculate, and transform.
For example, we can transform n(n + 1) into n? + n.

Branching Factor Algebraic notation has a wide branching factor, as
there are many possible tactics available at any step. Further, these
tactics are not intrinsic to the representational system: the tactic of
‘cancelling zeros’in 30/20 = 3/2 is often generalised to ‘cancelling
digits’yielding 32/22 = 3/2, allowing for an even wider branching
factor, including incorrect inferences.

Solution Depth Algebraic solutions can be extremely verbose, meaning
most solutions are far away. However, powerful tactics can dramat-
ically shorten the solution depth. This depends on the expertise
of the solver.

Quantity Scales Algebraic notation, and this expression, deal with ratio
values, the most sophisticated quantity scale.* v
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3.4.2 Capturing cognitive properties

We capture the cognitive properties of a representation in three ways:
estimate, annotate, and state. When possible, we estimate the cost of a
cognitive property from the components. Where we cannot estimate the
cost of a cognitive property from the appropriate components, we annot-
ate the components with attributes that capture the cost of the cognitive
properties. When the cognitive property has no suitable component that
we can annotate, we must stafe the cost of the cognitive property in the
R-descriptions.

Example 3.9. The expression complexity cognitive property considers the
shape of parse trees for a representation.

Within the components of a representational system, we record prim-
itives (along with their types), and the patterns that compose the prim-
itives into terms. We also have the number of times each primitive and
pattern occurs in a representation through the occurs attribute. Thus we
can recursively apply the patterns and instantiate them with primitives
and other patterns until we have exhausted the number of occurrences.

This procedure gives us an estimate of the breadth and depth of the
potential expressions in the representation, from which we can com-
pute the expression complexity cognitive cost. The cost balance between
broad-but-shallow and narrow-but-deep expressions will be based on em-
pirical studies. For example, do many levels of grouping help the reader
structure their thoughts, or obscure relationships between deeply nested
components? \V,

Example 3.10. A pattern defines the context of a primitive, and so the
cost to register that primitive depends on the pattern. To determine the
cognitive cost of registering the primitive, we annotate the patterns which
it is used in: the ‘registration’ attribute has one of four values, increasing
in how costly they are:

e emergent, such that gestalt principles support registration;
e spatial index, exploiting coordinates or other positioning;

* notation index, allowing for ordering and keying such as in dic-
tionaries; and

e search, forcing slower registration with limited support.

For example, registering a red dot from a collection of black dots is
fast due to the pop-out effect, so the pattern it occurs in is annotated
‘emergent’; registering the letter ‘S’in a grid of 5’s is a slow search problem,
so the pattern it occurs in is annotated ‘search’ v

Estimating the cost of cognitive properties is our most favoured ap-
proach, as it scales well over many representations and can be updated eas-
ily by just tweaking some algorithm for deriving the value. The cognitive
properties for which we can estimated costs are number of types, concept
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55 Some estimates are
more accurate than others.
Number of types will be
exact, but the expression
complexity comes from a
heuristic based on the
patterns and occurrence
count attributes.

% Such a description is, in
practice, impossible; we
request the best possible
approximation.
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Typical weights of dog breeds. This plot uses both colour and height to encode the
same information about weights.

mapping, expression complexity, branching factor, solution depth, and
quantity scales.”” The number of types is estimated by counting the num-
ber of type-kinded components, while expression complexity, branching
factor, and solution depth are estimated by using the existing attributes of
pattern and tactic components and calculating how large the resulting in-
stantiations can become. Costs for quantity scales and concept-mapping
are estimated by inspecting correspondences to a reference description; a ref-
erence description is taken to be the ‘semantic’ description: it expresses
all and only the concepts for the problem.*

Example 3.11. Consider Figure 3.4. This plot is conveying the how much
common breeds of dogs weight in a coloured bar chart, but it is using
both colour and height for the same information. Against some reference
description (for example, a table) we would observe there is redundancy:
two different components, colour and height, map to the underlying
concept of weight. In some reference description, weights would map to
exactly one component. v

Annotating components with attributes means many cognitive prop-
erty costs can be recorded in a systematic way. Sometimes, these attributes
apply universally, and so are inserted into RS-descriptions. Otherwise,
the attributes are inserted into R-descriptions. RS-description attributes
are preferred because they are more general. Registration is inferred from
attributes on patterns, and inference type from tactic attributes.

One cognitive property remains: subRS variety. The cost of this cog-
nitive property is neither estimable from components, nor suitable as an
attribute on any existing components. So we must state the subRS vari-
ety in any R-description: we introduce a new component kind ‘modes’
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which describes the heterogeneity of a representation. The value is an
integer from 1 to 6,7 where 1 is no heterogeneity (the system has exactly
one ‘modality’), and 6 is extremely heterogeneous. Most representations
are 1 or 2: a table filled with formulae would be 2, because it contains
a grid, which uses space to encode information, and equations, which
are sentential and use symbols and juxtaposition. This then becomes the
cost of the subRS variety cognitive property.

SUMMARY OF SECTION 3.4

While components capture the more ‘formal’ aspects of a representation,
cognitive properties capture the interaction between the representation
and the human interacting with it. We categorise these cognitive prop-
erties along two axes: the granularity of the property, from properties
at the atomic level of the representation through to properties over the
entire representation; and the time scales of cognitive processes, from
sub-second registration processes to multiple-minute solution genera-
tion. We consider the cost of the cognitive properties for a specific rep-
resentation and user, and how we might estimate this cost by building
on top of the description components.

SUMMARY OF CHAPTER 3

Between components and cognitive properties, we can construct de-
scriptions of representational systems, representations, and the problems
those representations denote. This goes towards answering our first re-
search question, breaking down problems, representations, and repres-
entational systems in a way that allows us to describe them consistently.
This work forms the ‘fifth’ contribution of this dissertation, which is also
part of the rep2rep research project. The RS-, R-, and Q-descriptions
discussed in this chapter capture the details necessary to discuss repres-
entations, but we are still short of comparing representations. We need
to understand how the representations are similar, and subsequently dif-
ferent, to assess the suitability of representations. For this, we introduce
correspondences.
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4.1

CORRESPONDENCES

Why is a raven like a writing desk?

— The Hatter (in Lew:is Carroll’s
Alice in Wonderland)

WE HAVE SEEN that representations and representational systems are
different, one being specific to a problem, and the other describing a
class of representations; both can be described using sets of components.
But knowing the representations and systems in isolation is insufficient
to make a recommendation: what would #his problem look like in the
other representational systems?

This chapter introduces correspondences, which intend to capture ‘in-
tuitive similarity? We introduce this informally, then contribute a form-
alised, realisable definition that we can use to build a representation
recommendation system. We also consider how correspondences can
be discovered in a semi-automated manner, and how we can construct
descriptions of representations we have not seen.

This chapter addresses our second research question: how repres-
entational systems, and their components, are similar. It also develops
the first novel contribution of this dissertation, correspondences. In Sec-
tion 4.1 we define correspondences, with more detail on the strength of
correspondences in Section 4.2. Section 4.3 explores how we can support
analysts by interactively discovering new correspondences. Finally, Sec-
tion 4.4 applies correspondences to construct pseudo-descriptions. Most of
the work in this chapter was presented at the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) 2020 [Stockdill et
al. 20-a] and the workshop on Explainable Smart Systems for Algorithmic
Transparency in Emerging Technologies (ExSS-ATEC) 2020 [Stockdill et al.
20-B]. The work in Section 4.4 is yet to be published.

Sameness and component formulae

Correspondences model the ‘similarity’ of concepts across representa-
tions. We examine how different components in distinct representational
systems would be considered the same by people, despite having poten-
tially different characteristics—correspondences capture analogies. In
this section we start with an informal definition, and build up the pieces
we need to define what it means for components to correspond, and for
representations to satisfy a correspondence. Formally, a correspondence
is a triple (a, b, s), but this section considers only a and b.
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1 For more on kinds, see
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This figure is a reproduction of Figure 1.1. Two representations of the ‘same’ expres-
sion in different representational systems: algebra and dot diagrams. The algebraic
representation asserts that the sum of integers between 1 and n is equal to the
stated quadratic expression. The dot diagram counts the dots in a triangle by ver-
tically stacking rows of dots (the black-edged circles), each one longer than the
last, then observing a symmetry to create a rectangle. The annotations assert the
generalised size of the rectangle, and so the number of dots in the original triangle
is half the number in the rectangle, which itself is the product of the dimensions.

Sameness and purpose

What does it mean for two things to be ‘the same”? We take a purpose-
driven view of sameness: if two things fill equivalent roles in each rep-
resentation, then they correspond. For example, in Figure 4.1, the dot-
arrangements are filling the role of numbers, while stacking is filling
the role of adding, and partitioning (by colour, in this case) is filling the
role of dividing. The intuition is that these things are ‘the same’ (have
equivalent semantics) in different representational systems.

Let us break down ‘purpose’ further. The purpose of a component is
related to its kind,' where primitives and patterns serve to encode ideas,
types and patterns provide structure, laws hold truths, and tactics allow
change and progress. The boundaries between kinds are not sharp, par-
ticularly primitives/patterns and types/patterns, so it is not uncommon
to have correspondences between components of different kinds.

A particularly important class of correspondences are those that cross
the primitive/pattern boundary, and are valuable in both directions. If a
primitive (formally) corresponds to a pattern, this is decompositional: the
pattern encoding can reveal deeper structure in the ‘opaque’ primitive;
conversely, when patterns correspond to primitives, this is abstraction: the
details are concealed within a single, higher-level concept. For example, +
is a primitive, while stacking is a pattern. This analogical link highlights
properties of addition, such as associativity and commutativity, that are
not immediately apparent from the symbol +, yet are obviously true
when stacking dots. Importantly, the same concept is behind both the
pattern and the primitive.
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4.1.2  Source and target

We begin by considering the first two of the three pieces that make up
a correspondence: the source and the target. At their simplest, each is
a single component: source component a in RS-description A corres-
ponds to target component b in RS-description B. The meaning of these
two terms changes slightly depending on the interpretation we assign to
correspondences: explanations for existing analogies, or requirements
for creating analogies.
Consider correspondences as part of an explanation of an analogy:
the source (the ain (@, b, s)) is part of an R-description of the content
in the original representation; the target (the b) is part of an R-descrip-
tion of the content in the analogous representation. ‘Part of a description’
is literal: a and b are components® within R- and Q-descriptions as we 2 Almost; a and b are
defined them in Chapter 3. With two representations for which we have  slightly more complex
descriptions, we can inspect the correspondences that link them. The ~han that as we will see in
correspondences identify which components in each description are section 4.14.
related, and how strongly the two components are linked (the strength
s). By presenting the set of correspondences between the descriptions to
the user—potentially run through tools to improve the user experience,
such as natural language generation—the analogy can be explained.
Explaining an existing analogy requires both the original and analog-
ous representation descriptions be given. If we do not have the analogous
representation, and instead assume a single R- or Q-description as the
source, and an RS-description as a potential target, we have a different in-
terpretation: the correspondences give requirements to the RS-description
that it must fill to form an analogy with the original representation. By
considering the correspondences from the given R- or Q-description to
the RS-description, we can select exactly those components that would

be in an R- or Q-description, essentially creating a new R-description.> 3 We shall extend this

. . point in Section 4.4.
Example 4.1. Inspecting Figure 4.1, there are ‘correspondences’ between

the representations: for example, numbers are like dot arrangements.*  * For now, ignore the
0.9—it just means the
(type number, type dot-arrangement, 0.9). correspondence is ‘good:

By examining the correspondences that are satisfied® by both of these 5 We define ‘satisfaction’
representations, and elucidating the strongest correspondences, we can ~ in Section 4.1.3.
signal to a reader how the representations are similar. The corresponden-
ce from numbers to dot arrangements is strong, so we present it in some
way to explain the analogy in Figure 4.1.
Alternatively, imagine the second representation, the dot-diagram,
was not present. Then the correspondences from the original algebraic
representation into the dot-diagram representational system carry the
informational requirements of the representation to the new system. Any
components of the original expression that do 7ot have analogues in the
dot-diagram representational system are ‘unsatisfied’—and if in the Q-de-
scription they are important, then we know the new representational
system is deficient. Using our number correspondence above, we can
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7 See Section 4.4 for
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disjunctive normal form
component formula (see
next section): this is not
the sat problem.
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Cognitively, it might make
things worse! See excess
concept mapping in
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suggest that an appropriate representation encoded as a dot diagram will
use those dots to represent the numbers. v

We draw attention here to work by Gentner on analogy, and spe-
cifically the focus on structural alignment [Gentner 02]. The point of
structural alignment is to observe the similarities between not just sur-
face features (such as colour, shape, or size) but how the components
work together to form larger structures. Similarly, correspondences aim
to capture the larger structural similarity, but a/so the surface-level details.
Correspondences act at all conceptual levels of a representation: from
primitives to types to patterns to tactics and laws, each moving from a
‘simple’ analogy to a more complex, structural analogy. We will see later®
that we use ideas similar to the structure-mapping engine [Falkenhainer
et al. 89].

Satisfiability and covering

Correspondences and descriptions need to be connected to each other.
To form this connection, we define satisfaction. For a description to lefl-
satisfy a correspondence it must satisfy the source component, and simil-
arly to right-satisfy a correspondence it must satisfy the farget component.
Thus if the pair of descriptions (A, B) where A left-satisfies a correspon-
dence c and B right-satisfies c, then we state that c is satisfied by (A, B).
We delay a formal definition of satisfaction until Section 4.1.4.

We are not (yet’) attempting to construct descriptions that satisfy
correspondences; we are only checking that existing descriptions satisfy
correspondences.®

When we attempt to make a representational system recommenda-
tion, we will inspect the correspondences between two representational
systems. But we do not consider a// the correspondences: some may not
be relevant to the problem at hand. But what if we choose the subset

{<a> Xy 81 >> <CL, Y, 52>}

where a is ‘covered’ twice? Covering is the ‘dual’ operation of satisfying:
descriptions can satisfy a correspondence, while correspondences cover
a description. A correspondence leff-covers components that occur in the
source component; similarly it 7zght-covers components that occur in the
target component. The covered set is the set of all components from a
description that are either left or right covered by a correspondence.
From a set of correspondences, we preserve the covering multiplicity:
how many times a component in a description is covered by correspon-
dences in some set of correspondences. If a component has a covering
multiplicity greater than one, then there will be some redundancy in
our representation. Consider our set with a corresponding to x and y
in separate correspondences: the covering multiplicity of a is 2. Do we
reward the target representation, because it can encode a really well?
This does not make sense: if we can encode a as x, then having an al-
ternative way (y) does not improve the situation.” Instead, we say sets
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of correspondences are minimally redundant and maximally covering
(MRMC) if:

e the number of times a is covered in the correspondence subset is
as small as possible (minimal); and

* as many components as possible (maximal) from the source rep-
resentation are covered by the set of correspondences.

Such a set may not uniquely exist, so we must approach this as an op-
timisation problem. We optimise the covering condition first, and the
redundancy condition second. We shall revisit this concept in Section 5.3.

Component formulae

Relationships between representations are rarely so simple as to be ac-
curately captured by a correspondence from one component to another
single component. Thus we allow the correspondence source and target
to be component formulae, rather than components alone, meaning we
have correspondences between combinations of components.

Example 4.2. Within our dots example, we can think about how sum-
mation relates to stacking. Within the rules of our dot representational
system, we may stack dot arrangements horizontally or vertically—it
does not matter which is chosen generally, as both are the same as sum-
ming integers.”” Thus we can say that summation corresponds to stacking
horizontally or stacking vertically. The correspondence is

(primitive ) _, pattern stack-horizontal or pattern stack-vertical, 1),

indicating that either or both types of stacking is sufficient to capture
the same information as summation. v

The three connectives of correspondence formulae are AND, ORr, and
NoT. These broadly behave as expected:

e AND denotes that both components are required to capture the
same information as the correspondence target;

* or denotes that one or both components are sufficient to capture
the same information as the correspondence target; and

e nort denotes that this component precludes the correspondence.
For example, (NOT a, X, s) is only left-satisfied if component a is
not in the source description, while x must be in the target descrip-
tion.

The connectives can be combined following the grammar below when
describing a correspondence, but we always consider the formula to be
in disjunctive normal form:" a formula consists of a disjunction of clauses
(at the top level, there are only or connectives), clauses are conjunctions
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of terms (there will be no or connectives within AND connectives), and
terms consist of only components or negated components (in disjunct-
ive normal form, the NoT can only occur in front of components, not
formulae). As an example: (w or x) AND NoT(y OR z) would have to
become (W AND NOTY AND NOT z) OR (X AND NOTY AND NOT z) to be in
disjunctive normal form.

Definition 11 (Component formulae). A component formula is a set of
components joined by AND, OR, and NoT connectives. The grammar is:

formula = component
| Not(formula)
| (formula) aND (formula)
| (formula) or (formula)

Parentheses may be dropped when there is no ambiguity. The order of
precedence has Not binding tightest, then aAND, and finally or. A formula
in disjunctive normal form follows a different grammar:

formula = clause
| (formula) or (formula)
clause = term
| (clause) aND (clause)
term = component

| NOTcomponent

As before, parentheses may be dropped when the formula is unambigu-
ous; the order of precedence is the same.

We earlier delayed a formal definition of satisfaction, because we
must consider the case where we have component formulae forming the
source or target of our correspondence. We can now define satisfaction.

Definition 12 (Satisfaction). Assume that component formula f is in
disjunctive normal form. Then f is satisfied by a description d if, for any
clause t in f, every non-negated component c in t (that is, the component
is not preceded by a NoT connective) is present in d, and no negated
component ¢ in t is present in d. We thus define

Satf(d) & E|t€clauses(f) [vc€positive(t)c € d/\vc’enegative(t)cl Q d]

where clauses(f) is the set of clauses in f, positive(t) is the set of non-
negated components in term t, and negative(t) is the set of negated
components.

A description satisfies a component formula if all the non-negated
components” —and none of the negated components—in at least one
clause of the formula are present in the description. We always work
with formulae in disjunctive normal form.
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Let us consider this more informally. The connective AND behaves as
would be expected: if either component is missing from a description,
then this component formula is not satisfied. The NoT connective is
also straight-forward: if the component being ‘negated’ s present in a
description, then this component formula is not satisfied.

Example 4.3. The description consisting of {a, b, ¢, d} would satisfy the
formulae

(aanDb)ore and (aAaNDNoTe) OR (b AND f),
but it would not satisfy the formulae
aANDe or (aANDNOTb)orNoTd. v

When considered as a single correspondence, the or connective fol-
lows expected semantics: if either or both of the components is in a
description, then this component formula is satisfied. But the or con-
nective has more complex behaviour when we consider sets of correspon-
dences. Then the two correspondences (a, b, s) and (a, b’ s) seem
similar to the single correspondence (a, borb’, s).” But when a,b,and
b’ are matched, something interesting happens: with the two correspon-
dences, the ‘strength’ of the relationship between the two descriptions
s is considered fwice; with a single correspondence, the strength s is
considered only once. The semantic difference here is whether two is
better than one—is it better to have b and b’, or is having both no better
than having either? We decide by considering whether the components
would still occur independently in descriptions: if b and b’ are inde-
pendent given a, then have two correspondences; otherwise, have only

one correspondence describing the relationship between a and both b
and b’.

Example 4.4. Returning to our earlier Example 4.2, in algebra, we can
sum values: ) x, for example. Using dot notation, we can ‘stack’ arrange-
ments together:

OO
O OO0

Note we had a choice: we could stack the dots horizontally, or we could
stack the dots vertically. To associate these with addition, we might chose
to have these be two correspondences:

OO0 OO or

(primitive ) _, pattern stack-horizontal, 1)
and
(primitive )_, pattern stack-vertical, 1).

But in this case, the two types of stacking are not independent: either
is sufficient to encode summation. Having both patterns of stacking is
not ‘better’ than having esther pattern. They are not independent given
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summation: if we are exploiting the ability to stack horizontally, we can
also exploit the ability to stack vertically. Thus, we prefer the combined
correspondence using the connective OR:

(primitive ) _, pattern stack-horizontal or pattern stack-vertical, 1)

ensuring that having both is not ‘better’ than having either. v

SUMMARY OF SECTION 4.1

We can combine the source component formula and the targer component
formula to express a relationship: that these two things are analogous.
For representations we say that a correspondence aims to capture how
information can be re-encoded across representations. One caveat of
this relationship is that it is not ‘all-or-nothing* the information can be
preserved to a certain degree, ranging from perfect down to completely
lost. We need a way to capture the strength of this relationship.

Strength

Correspondences are triples, and we have now explored the source and
target parts; we now introduce the third and final part of the correspon-
dence triple, strength. The strength of a correspondence is a measure of
how ‘good’ the correspondence is: a value close to 0 means the corres-
pondence is poor, while a value close to 1 means the correspondence is
excellent.

Component probabilities

We define the strength of a correspondence in terms of the probability
of component formulae. To simplify, we begin with considering corres-
pondences only over components, not formulae.

In an RS-description, there are many components. In each R- and
Q-description, we have only a subset of these components, and how
often they occur in these descriptions reflects how often the concepts
encoded by these components occur generally within representations.
Thus a component has some baseline probability of occurring within
an R-description, and whether it occurs or not is binary: it is there, or
it is not. Thus we model components as Bernoulli random variables,™
such that they are either present in an R-description or they are absent
from an R-description, and equip an RS-description with a function Pr(-)
which assigns to each component a probability of being present in any
R-description.

But how do we define the output of the probability function? This
is a difficult, ongoing problem. Presently, we assign the probability of
a component being present heuristically. This has the advantage of re-
quiring no other resources to compute, but does reflect biases of the
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experts setting the heuristic values.” Alternatively, we could define the
probability in a more direct, frequentist manner. Consider a dataset of
triples (r,p, d) where r is a label for a representational system, p is a
label for a specific problem, and d is an R-description for problem p
using representational system 1. If we partition the dataset by r, each
partition contains descriptions of many problems, each encoded in the
same representational system; if we partition instead on p, each partition
contains many descriptions of the ‘same’ problem, but encoded in many
different representational systems.

Consider first a partition that gives us all descriptions within each
representational system: then each component has a probability of oc-
curring in a random description: this is the baseline probability, and thus
for a component a we have Pr(a). We do not assume that the compon-
ents are independent: the probability of combinations of components
would need to be captured as well; this could be stored in a Bayesian
network. Thus for the component formula a AND a’ we can compute
Pr(a anp a’).

If instead we consider the partition that gives us the ‘same’ problem
in different representational systems, we can calculate different probabil-
ities. Given that component a has occurred in an R-description which
encodes a representation from representational system A, we can calcu-
late how often component b occurs in other R-descriptions encoding
representations from representational system B. Thus we have the con-
ditional probability Pr(b | a) across representational systems.

Let us consider this more rigorously,and more generally. Consider for
some problem we have Q-description q; which is in written in some rep-
resentational system with RS-description R. This problem can be trans-

formed into the ‘same’ problem in alternative representational systems.

This is more general than translations, which are provably equivalent.”
This set of transformed problems starting from g is given by T(qi). We
restrict this set to be only those Q-descriptions which are instantiations
of some new R-description R’ such that

Tr/(qi) ={q; € T(qi) | g; is an instantiation of R} .

Note that this is still a sez, because there can be many equally valid ways to
encode the same problem into a new representational system. Assuming
some predicate sat,(q;) is true when the component a is present in ¢y,
then we have

_ > {a] € Ter(qi) [sate(qs) Asaty(q)) }|
> {a] € Trr(qi) [sata(qs) }|

where we sum over all problems g; that contain component c. As before,
this generalises to component formulae.

Now that we have probabilities defined over components, we extend
this to component formulae. Because of how we define component
formulae using AND, OR, and NoT, the operations from probability map

Pr(b|a)

(4.1)
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where b is Jess likely
shortly.
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exactly as one expects: AND is equivalent to N, OR is equivalent to U, and
NoT is equivalent to . The full details how these sets of connectives
relate to each other, and the construction required to make this happen,
are in Appendix A.

Defining strength

Strength is intended to capture how well two different groups of compon-
ents fill the same role in different representations. We can approximate
this by how well the presence of one component formula based on the
R- or Q-description for the original representation predicts that the other
formula will be satisfied by a description for an analogical representation,
or how confident you would be in observing a set of components that
satisfy b given that you have observed a set of components that satisfy a.
The conditional probability of b given a is almost what we want, but we
need to also consider how likely the probability of b was regardless of a:
is the conditional probability higher, or lower; and by how much? This
gives us a change in probability of b based on the observation of a; if b
is more likely, this value is large; if b is no more likely, then this value is
zero.” Thus we have Pr(b | a) —Pr(b), the change in likelihood of b when
observing a. But this value also has problems: probabilities are bounded
between 0 and 1, meaning an already likely component b has very little
‘room to grow. Thus we scale the change by the potential change: the up-
per bound on probabilities is 1, so the largest possible change is 1—Pr(b).
We normalise by 1 — Pr(b) so that the strengths are comparable: if the
probability increased to fill half of the remaining ‘head room; we make
the strength 0.5, regardless of the original probability. Thus the strength
of a correspondence is as in Definition 13.

Definition 13 (Correspondence strength). We define the strength of a
correspondence (a, b, s) as

_ Pr(b|a) — Pr(b)

1= Pr(b) (4-2)

where Pr(-) is the probability function for a representational system.
We assume that neither Pr(a) nor Pr(b) are O or 1: if either are 0, then
the component formula is never satisfied by any description, and thus is
not worth considering in correspondences; if either are 1, then we have
a component formula that will be satisfied in every description, which
carries no information (in both the informal sense and the information
theory sense) and thus not worth considering in correspondences. We
also assume Pr(b|a) > Pr(b)—that is, the component b is more likely
to occur in the analogous description if we already know that a is in the
original description.

Example 4.5. Consider two components a and b such that a guarantees
b—that is, if a is a component of the source representation description,
then b must be a component in any analogous representation description.
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Then we have that Pr(b | a) = 1. By the definition of correspondence
strength,

_ Pr(b|a) — Pr(b)

1 — Pr(b)
_ 1—="Pr(b)
~ 1—Pr(b)

assuming Pr(b) # 1. That is, a correspondence (a, b, 1) means that a
guarantees b. \

Note that a correspondence with NoT is zot the same as a 0 strength
correspondence:* these concepts are orthogonal. A strength of 0 means
there is no relationship between the source and target of the correspon-
dence; a component x being absent from a description (that is, NOT )
might strongly indicate some component formulae will be satisfied in
the target representation.

Example 4.6. Consider again components a and b, but now a has no
bearing on b—if a is a component of the source representation descrip-
tion, then have no new information on whether b will be present in any
analogous representation descriptions. Then Pr(b | a) = Pr(b), and by
the definition of correspondence strength,

_ Pr(b|a) — Pr(b)

1 —Pr(b)
_ Pr(b) —Pr(b) 0
~ 1—Pr(b)

assuming again that Pr(b) # 1. Thus the correspondence (a, b, 0)
means that a and b are unrelated. v

Example 4.7. Take two components, n = type number in the algebraic
representation, and d = type dot-arrangement in the dots representation.
Assume that from a dataset we have computed Pr(n) = 0.86 and Pr(d) =
0.9, but we also have that Pr(d [ n) = 0.99. Then the strength of the
correspondence (n, d, s) is

_ Pr(d|n)—Pr(d)
n 1—Pr(d)
~0.99-0.9

- 1-0.9
=0.09/0.1 = 0.9,

and so we have the correspondence
(type number, type dot-arrangement, 0.9). v

A similar logic applies when b becomes /ess likely after observing a. If
component formula b has become less likely after observing component
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formula a, then we again want the difference—but reversed, so the value
is positive—and divide this by the ‘room to fall’; in this case, potentially
down to zero. Converting this to a formula, we have Pr(b) — Pr(b | a)
in the numerator, and normalise by the potential drop: a probability
is bounded below by 0, so we normalise by Pr(b) — 0 = Pr(b). Thus
the strength of an ‘inverse’ correspondence (one in which a component
formula becomes less likely) is

Pr(b) — Pr(b|a)
Pr(b)
We can rewrite Pr(b) as 1 — Pr(Norb) and Pr(b|a) as 1 — Pr(Nnorb|a),

assuming that component formula connectives behave the same as set
connectives.”? This yields

(1 —Pr(notrb)) — (1 —Pr(NnoTb|a))

S =

1 — Pr(NoTb)
_ Pr(norb|a) — Pr(noTb)
N 1 — Pr(notb)

which is the strength of the correspondence between a and Not b. Thus
a separate definition for inverse correspondences is unnecessary; we can
instead redefine the correspondence to be between a and Nnot b, rather
than a and b.

Example 4.8. Consider our components a and b again, but now a pre-
cludes b—if a is a component of the source representation description,
then b never occurs in analogous representation descriptions. Then we
have Pr(b|a) = 0. Applying the definition of strength naively yields

, _ Pr(bla) —Pr(b)
- 1 — Pr(b)
_ —Pr(b)
1 —Pr(b)

<0

violating the assumption that 0 < s < 1. Instead, we consider what it
means for a to correspond to NoT b: taking that Pr(NoTrb) = 1 — Pr(b)
and Pr(norb|a) =1—Pr(b|a) = 1, we have

. Pr(notrb|a) — Pr(NnoTb)

1 — Pr(NoTb)
_ 1—Pr(norb)
- 1—Pr(notb)

when Pr(b) # 0. So we have a perfect correspondence between a and
Not b. If instead we consider the formula stated earlier for when a com-
ponent becomes less likely, we have

_ Pr(b) —Pr(b[a)
5= Pr(b)

_ Pr(b) -0

~ Pr(b)

=1
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again assuming Pr(b) # 0. So the correspondence (a, Notb, s) reflects
the same strength as we would expect from a definition for ‘inverse’
correspondences. v

Finally, with strength defined, we are ready to complete the definition
of a correspondence.

Definition 14 (Correspondence). We define a correspondence to be
(a, b, s) (4.3)

where a is the source, b is the target, and s is the strength. The source and

target a and b are component formula, while s is a real number between
Oand 1.

From the point of view of representations, rather than components
and descriptions, correspondences capture how information can be pre-
served between representations, and the degree to which that informa-
tion is preserved. They do so by linking together representational sys-
tems, expressing relationships that transcend a single pair of representa-
tions. Correspondences are a central contribution of this dissertation.

Correspondence describe an implication relationship: if this, then
that. Except correspondence strength changes this subtly: if this, then
maybe that. There is an asymmetry from the definition of strength
between a corresponding to b and b corresponding to a;* this sim-
ilarly occurs with implication, where o« — 3 does not necessarily mean
P — .

But implication does exhibit contraposition: if « — 3, then —f3 —
—«. For correspondences: if we have (a, b, s), then we must also have
(NoTb, NOT @, §).2

Theorem 1 (Correspondences exhibit contraposition). If; for any com-
ponent formulae a and b, we bave the correspondence (a, b, s), then the
correspondence (NOTb, NOT a, s’ ) has the same strength; that is, s = s'.

Proof. Using (NoT b, NoT a, s), by the definition of strength we have

, _ Pr(nora|Norb) — Pr(noTa)
N 1 — Pr(~oT a)
(1 —Pr(a|noTb)) — (1 —Pr(a))
Pr(a)
Pr(a) — Pr(a|NoTb)

- Pr(a) ‘ (*)
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Eliminating the NoT b in the condition is slightly more complicated.

Pr(a aAND NOT D)
Pr(noTb)
_ Pr(a anp NoTb)
1 — Pr(b)
_ Pr(norb|a) - Pr(a)
N 1 —Pr(b)
(1—Pr(bla))-Pr(a)
1 —Pr(b)

Pr(a|Notrb) =

Substituting this back into () we get

o .(Pr(a)_Pr(a)-U—Pr(bla)))

S

"~ Pr(a) 1 — Pr(b)
1 1—Pr(bla)
1 — Pr(b)
_ (1 =Pr(b)) = (1 = Pr(b|a))
N 1 —Pr(b)
_ Pr(bla) —Pr(b)
~ 1—=Pr(b)

where s is the strength of the correspondence ( a, b, s). Thus the strength
of the contrapositive of the correspondence is equal to the strength of
the correspondence. O

Alternative measures

Our definition of strength does not exist in the literature. But two al-
ternative measures need exploring: mutual information, and Kullback-
Leibler divergence. This subsection makes use of concepts from Shan-
non’s information theory[Shannon 48], which we briefly cover here for
clarity. An outcome of an event has a certain amount of information asso-
ciated with it, and the amount is related to how surprising the outcome is.
A likely outcome has a small amount of information, while an unlikely
outcome has a large amount of information. The information content
of outcome x is
I(x) = —log Pr(x).

The logarithm is often taken to be base-2, and so the measure of inform-
ation content is bits. If we consider a random variable X which has many
possible outcomes x;, then we need to consider all the different outcomes
together. This is the entropy of a random variable,

H(X) =— ) Pr(X=x;)logPr(X = x)

which is the expected information content of all outcomes. Both inform-
ation content and entropy can extend to be conditional:

I(x|y) = —log Pr(x |y)
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and
H(X|y) =—) Pr(X=x:|y)logPr(X =x|y),
Xi
where we are considering x and X, respectively, given the already known
outcome Y. For a more thorough treatment of information theory, see
‘Elements of Information Theory’ [Cover et al. 05].

Mutual information [Cover et al. 05] captures the shared information
content of two random variables. Equivalently, it tells us how much
information we have about a second random variable after observing the
first. One definition is in terms of entropy:

I{a;b) =H(b) —H(b|a) (4.4)

where I is the mutual information, and H is the (possibly conditional)
entropy.

We immediately see similarities to our definition of strength, where
we consider the difference between a measure of b and a measure of
b given a. But the similarities end there, and there is one significant
drawback: mutual information is symmetric. That is, I(a;b) = I(b; a),
such that the strength of (a, b, s) is the same as (b, a, s). This breaks
an intuition of correspondences: they are not necessarily symmetric.”

In Equation (4.4), mutual information was defined in terms of en-
tropy. It could be defined in terms of the Kullback-Leibler (KL) diver-
gence [Kullback et al. 51; Cover et al. 05]

I(a;b) = Dkp(Preqp || Prq - Pry)

where Dgy (- || -) is the KL divergence, and Pry is the probability distri-
bution for random variable X. That is, the mutual information of a and
b is the divergence between their product (the ‘independent’ conjunc-
tion) and their conjunction probability (the true conjunction). The KL
divergence is defined as

P(x)

Di(P1IQ) =) P(x)log=— (4.5)

(x)

where P and Q are distributions; we are measuring the divergence of Q
from P.%

Because mutual information is inappropriate, perhaps we can use
the KL divergence differently. KL divergence is asymmetric, so we en-
sure that the parameters P and Q are asymmetric in their parameters:
the resulting divergence measure will then be asymmetric. Instead of
calculating the divergence between Pr(a N b) and Pr(a) Pr(b), we can
calculate the divergence between Pr(b | a) and Pr(b). Thus we can define
a modified strength sky:

_ DKL(Prb\a | Pry)

I(b) (4.6)

SKL
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We introduce the normalisation by I(b), the information content of b:
we assume a and b behave as Bernoulli random variables, so the KL di-
vergence between Pr(b | a) and Pr(b) is between O and I(b); normalising
by I(b) bounds the sk, between 0 and 1.

But sk;. loses nice properties that we have with strength. First, in-
version is different: if the probability of b goes down after observing
a, KL divergence still produces a positive value. But there is no ob-
vious relationship between the sk of the correspondence between a
and b to the sk between a and Norb. Second, we no longer have
contraposition: there is no obvious relationship between (a, b, s) and
(NoT b, NoT @, s’). These are two intuitive properties of correspondence
which do not exist when using sy ..

Example 4.9. Consider two component formulae, a and b, such that
Pr(a) = 0.7, Pr(b) = 0.8, and Pr(b | a) = 0.85. We can compute
Pr(notra) = 0.3, Pr(norb) = 0.2, Pr(NoTb | a) = 0.15, and Pr(NoT @ |
NoTb) = 0.475.

Using Definition 13, we compute the strength of the correspondence
(a, b, s) as

_ Pr(b|a) —Pr(b)

1 — Pr(b)
0.85—-0.8
— W — 0-25-

The contrapositive correspondence, (Not b, NoT a, s’) has strength

,  Pr(norta|noTb) — Pr(NoT @)

1 — Pr(NoT a)
~0475-0.3

103 0%

which is equal to s.
Now we perform the same computation, but using sk;. from Equa-
tion (4.6). First, we compute Dy (Pry|q || Pry):

Pr(bla
Dxu (Pryjq || Pry) ZPr a)log P( (1|>))

0.85 1—-0.85
= 0.85log, o8 T (1—0.85)log, 03

~ 0.0121

We then compute the normalising factor I(b):
I(b) = —log, Pr(b) ~ 0.3219

So the final strength is sx. &~ 0.0375. (This is incomparable to the above
values.)
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Consider now the contrapositive strength sg; . As before we start by
computing the Kullback-Leibler divergence:

r(NoT a|NOoT D)

P
DKL(PrNOT alNoT b H PrNOTa) = Z PI‘(NOT a | NOT b) 10g

Pr(NoT @)
= 0.475log, o:% +0.525 log, %

~ 0.0970
Then, computing the normalising factor I(NoT a):
I(NoT a) = —log, Pr(NoT a) ~ 1.7370

So the final strength is sg; ~ 0.0559, which is not the same as sk.. So
using strength as defined in Definition 13 ensures correspondences are
contrapositive, but if we were to use the alternative definition of strength
proposed in Equation (4.6), we would lose this property. v

Equation (4.6) has one further drawback which relates to the next
section: it lacks many of the nice properties we will use to discover
correspondences and strengths. We would lose the ability to compose
strengths without needing to know the conditional distribution of the
constituent component formulae; we would also lose the ability to re-
verse correspondences with a simple odds multiplication.”” By needing
to recompute strength from first principles, we lose encapsulation: we
must continually return to the artefacts which defined strength, rather
than the strength itself, to operate on correspondences. This complicates
reasoning about strengths and correspondences.

We will continue to use the definition in Definition 13 for two reasons:

e Strength is asymmetric; and
e Strength abstracts the underlying conditional probability.

Based on this analysis, neither mutual information nor Kullback-Leibler
divergence are appropriate.

SUMMARY OF SECTION 4.2

We have defined a correspondence as a relationship capturing the ability
for two component formulae to fill the same roles in their respective
descriptions. The degree of similarity is captured by the strength of the
correspondence. Strength is defined in terms of the probability of an
R-description containing a set of components that satisfy the component
formula, and can be derived from a dataset of R-descriptions. Correspon-
dences are contrapositive, and their strengths are bound between 0 and
1, allowing direct strength comparisons.
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% We consider
automatically deriving
correspondences in this
section; selecting
minimally redundant and
maximally covering
correspondence sets is
covered in Section 5.3.

4.3.1

» The ‘seed set’ is the set
of correspondences
provided by the analyst.
Correspondences from
this set provide the
premises for all the other
discovery rules until
further correspondences
are derived to build upon.

4.3.2

Chapter 4  Correspondences

Discovering correspondences

Correspondences are central to understanding how representational sys-
tems relate to each other, and we shall use them extensively when con-
structing our representation recommendation system. Ensuring a high-
quality set of correspondences is vital: missing or excessive corresponden-
ces can skew the results one way or another. We take steps® to avoid these
situations, with the goal of producing high quality recommendations.

In this section, we will describe four rules which allow us to automat-
ically suggest new correspondences: identity, for linking components
which are the same; reversal, constructing the correspondence (b, a, s’)
from (a, b, s); composition, for chaining multiple correspondences to-
gether; and relation, incorporating the wider context of descriptions and
components into discovering new correspondences.

Identity

The rule of identity states that a component formula corresponds with
itself perfectly: (a, a, 1). We use the notation from natural deduction
to visually represent our rules:

a=Db

Tan 1) ™

That is, if a = b, then a perfectly corresponds to b. We define = to be
true when there is a one-to-one mapping between the components in a
and b where the kind and value of each component pair are the same,
and the associated formula is equivalent.

Identity serves as a starting point for future derivations, and allows us
to construct correspondences even when no ‘seed set’ is available.” But
the rule only applies in limited cases where we have the same compon-
ents; this is appropriate for naturally overlapping systems such as variants
of algebra and symbolic manipulation systems, but is less appropriate
when linking representational systems of different modalities.

Reversal

If there is a relationship between a and b, then there is some relationship
between b and a. Thus, the rule of reversal. In our natural deduction
notation, we have

Note the modified strength s’, rather than the original strength. Much
like in classical logic where a — b does not tell us b — a, the strength
of the correspondence between a and b is not necessarily the strength
of the correspondence between b and a.

The modified strength s’ of the reversed correspondence is not un-
knowable: using Definition 13, we can derive the strength s’ from s.
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Theorem 2 (Correspondence strength reversal). Given the correspondence
(a, b, s), the strength of the reversed correspondence (b, a, s’) is

;L Pr(a) _ 1 — Pr(b)

S T3 T Pr(a) Pr(v)

Proof. For (b, a, s’), by Definition 13 we have that

,  Pr(alb) —Pr(a)
~ 1—Pr(a)

From Definition13, Pr(a), Pr(b) & {0, 1}. Further, by Bayes’ Theorem,

Pr(a|b) =Pr(b|a) - Pr(a)/Pr(b).

Thus
, _Pr(bla)-Pr(a)/Pr(b) —Pr(a)
5T 1—Pr(a)
— (Pr(b|a)/Pr(b) — 1) - %
_ Pr(b|a) —Pr(b) Pr(a)
N Pr(b) 1 — Pr(a)
_ Pr(b|a) —Pr(b) 1—Pr(b) Pr(a)
~  1—Pr(b)  Pr(b) 1—Pr(a)
B Pr(a) 1 — Pr(b)
%' T=Pr(a)  Pr(b)
as required. O

The reversed strength s’ is the original strength s multiplied by the
odds for a, and the odds against b. ‘Odds for’ is a measure of the likelihood
of something occurring, while ‘odds against’ is the likelihood of some-
thing not occurring. Thus the strength of the reversed correspondence is
the strength of the forward correspondence multiplied by the likelihood
of the original source component being present, and the likelihood of
the original target not being present; under the reverse perspective, we
multiply by the odds against the new source, and the odds for the new
target. One interpretation of this is that by reversing direction, we are
‘undoing’ one odds bias and replacing it for the opposite.

Example 4.10. We see this kind of asymmetric relationship frequently
between representational systems when one is more powerful than the
other. For example, every dot-arrangement is equivalent to a real number,
but not every real number is equivalent to a dot-arrangement—it thus
makes sense for the correspondence from the type component f